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Autism Spectrum Disorder (ASD) and 

Treatment

• Neurological developmental disorders characterized by impaired social 

interactions, difficulties in communication, and repetitive behaviors

– Prevalence in U.S.: 1 in 68 children

– Wide range of symptoms and severity

• Promising treatment: Intensive behavioral interventions

– Our focus: Pivotal Response Therapy

– Early intervention is important

• However, no “one size fits all” treatment,

use trial and error

 Need for precision medicine
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www.autismspeaks.org



Goal: Predict Autism Treatment 

Outcome from Baseline fMRI

• Functional magnetic resonance

imaging (fMRI) allows noninvasive

measurement of brain activity 

• fMRI has aided understanding of

ASD pathophysiology

We propose first use of fMRI for predicting ASD treatment response

• Data: 19 ASD children underwent 16 weeks Pivotal Response Therapy
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Venkataraman et al., TMI 2016



Supervised Learning Overview
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Learning Inputs and Outputs
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• Biological motion perception task

• Focus on social motivation regions:

Orbitofrontal cortex/ventromedial prefrontal cortex,

amygdala, and ventral striatum

Biopoint fMRI Paradigm
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Learning Inputs and Outputs

• Inputs: Baseline fMRI-derived biomarkers

– Acquire fMRI during Biopoint task

 Use t-statistics for contrast                                   in social motivation regions 

• Outputs: Treatment Outcome

– Measure Social Responsiveness Scale, Second Edition (SRS) Score pre and post 

treatment

 Use normalized change in SRS Score
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Learning Pipeline Overview
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Learning using Standard Random 

Forests
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• Learning method that constructs multiple decision trees with randomness

Random Forests for Regression
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• Learning method that constructs multiple decision trees with randomness

Random Forests for Regression

11

…

Data

Bootstrap

Sample 1
Bootstrap

Sample 2

Bootstrap

Sample N

Best split variable

chosen from m

randomly selected

inputs



• Output average prediction across trees

Predictions from Random Forest
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Random Forests Results in Weak 

Predictive Power

• Leave-one-out cross-

validation

• MSE ± SD: 0.82 ± 0.96

• r = 0.39, p = 0.038 

• Problem: Too many 

noisy/irrelevant inputs
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Red line: Perfect prediction



Learning using Standard Random 

Forests
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Learning with Variable Selection
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Two-Step Variable Selection Process
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Red  Yellow: More frequently selected across trials

Original Inputs: Social motivation 

regions

1. Variable selection using random 

forest variable importance

2. Stepwise variable refinement



Learning with Variable Selection
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Learning with Variable Selection
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Learning with Bias Correction
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Proposed Learning Pipeline Significantly 

Improves Prediction Accuracy
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• MSE ± SD: 0.29 ± 0.43

• r = 0.83, p = 0.001 

• Variable selection reduces 

noisy inputs

• Bias correction improves 

predictions at the extremes

Red line: Perfect prediction



Conclusions

• Developed learning

pipeline to predict

response to autism

behavior therapy

from baseline fMRI

• Move toward

personalized treatment

• Future work

– Other biomarkers for more robust/accurate prediction, e.g., functional connectivity

– More data, assess generalization
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