Predicting Autism Behavioral Treatment Response from Baseline Functional MRI

Nicha C. Dvornek, Postdoctoral Fellow, Yale Child Study Center

Rising Stars in Biomedical Massachusetts Institute of Technology, Cambridge, MA November 9, 2016

Autism Spectrum Disorder (ASD) and Treatment

- Neurological developmental disorders characterized by impaired social interactions, difficulties in communication, and repetitive behaviors
 - Prevalence in U.S.: 1 in 68 children
 - Wide range of symptoms and severity
- Promising treatment: Intensive behavioral interventions
 - Our focus: Pivotal Response Therapy
 - Early intervention is important
- However, no "one size fits all" treatment, use trial and error
- \rightarrow Need for *precision medicine*

www.autismspeaks.org

Goal: Predict Autism Treatment Outcome from Baseline fMRI

- Functional magnetic resonance imaging (fMRI) allows noninvasive measurement of brain activity
- fMRI has aided understanding of ASD pathophysiology

Venkataraman et al., TMI 2016

 \rightarrow We propose first use of fMRI for predicting ASD treatment response

• Data: 19 ASD children underwent 16 weeks Pivotal Response Therapy

Supervised Learning Overview

Learning Inputs and Outputs

Biopoint fMRI Paradigm

• Biological motion perception task

 Focus on social motivation regions: Orbitofrontal cortex/ventromedial prefrontal cortex, amygdala, and ventral striatum

Learning Inputs and Outputs

- Inputs: Baseline fMRI-derived biomarkers
 - Acquire fMRI during Biopoint task
 - \rightarrow Use t-statistics for contrast

in social motivation regions

- Outputs: Treatment Outcome
 - Measure Social Responsiveness Scale, Second Edition (SRS) Score pre and post treatment
 - \rightarrow Use normalized change in SRS Score

Learning Pipeline Overview

Learning using Standard Random Forests

Random Forests for Regression

• Learning method that constructs multiple decision trees with randomness

Random Forests for Regression

• Learning method that constructs multiple decision trees with randomness

Predictions from Random Forest

• Output average prediction across trees

Random Forests Results in Weak Predictive Power

- Leave-one-out crossvalidation
- MSE \pm SD: 0.82 \pm 0.96
- r = 0.39, p = 0.038
- **Problem**: Too many noisy/irrelevant inputs

Learning using Standard Random Forests

Learning with Variable Selection

Two-Step Variable Selection Process

Original Inputs: Social motivation regions

1. Variable selection using random forest variable importance

2. Stepwise variable refinement

Red \rightarrow Yellow: More frequently selected across trials

Learning with Variable Selection

Learning with Variable Selection

Learning with Bias Correction

Proposed Learning Pipeline Significantly Improves Prediction Accuracy

- MSE \pm SD: 0.29 \pm 0.43
- r = 0.83, p = 0.001
- Variable selection reduces noisy inputs
- Bias correction improves predictions at the extremes

Conclusions

- Developed learning pipeline to predict response to autism behavior therapy from baseline fMRI
- Move toward personalized treatment
- Future work
 - Other biomarkers for more robust/accurate prediction, e.g., functional connectivity
 - More data, assess generalization

Thank You!

- Dr. James S. Duncan (Postdoc advisor)
- Dr. Pamela Ventola (Data collection)
- Dr. Daniel Yang (fMRI preprocessing)
- NIH grants T32 MH18268 and R01 NS035193
- Contact: nicha.dvornek@yale.edu