Demographic-Guided Attention in Recurrent Neural Networks for Modeling Neuropathophysiological Heterogeneity Nicha C. Dvornek, Xiaoxiao Li, Juntang Zhuang, Pamela Ventola, and James S. Duncan

MLMI 2020 October 4, 2020

Yale SCHOOL OF MEDICINE

The Challenge of Learning from fMRI of Heterogeneous Psychiatric Disorders

- fMRI used to characterize pathophysiology of psychiatric disorders, e.g. autism spectrum disorder (ASD)
- ASD is extremely heterogeneous
- Early studies impose homogeneity
 - Restrict gender, age, etc.
 - \rightarrow Smaller datasets
 - \rightarrow Poor generalization of results
- Recent large open datasets (ABIDE)
 - Highly heterogeneous
 - \rightarrow Poor classification accuracy of ASD/Control

Include Demographic Information to Mitigate Heterogeneity Problem

- Non-imaging, scalar variables easy to obtain: Age, sex, IQ, ...
- Many ways to incorporate demographic variables

- No approach aims to modulate differences in neurological mechanisms
- We model heterogeneous functional network patterns using a demographic guided attention + RNN model for fMRI

Baseline LSTM Network for fMRI Time-series Data¹

Yale school of medicine

¹Dvornek et al., MLMI 2017; ²Craddock et al., Nature Methods 2013

Proposed Demographic-Guided Attention Network

Generalized Attention Mechanism Based on Demographic and fMRI Information

- Query: Demographic information *d*
- Key and value: LSTM output h_t
- Scaled dot product attention computes context *c*:

Model Neurological Heterogeneity with Residual Connection between LSTM and Attention Outputs

- Use context to bias LSTM output
- \rightarrow Change focus on LSTM nodes based on demographic information

- For multiple attention heads:
 - Process each head k output $c_k + h_t$ with separate FC layer
 - Take maximum score

Model Greater Neurological Heterogeneity with Multiple Attention Heads and Query Diversity Loss

- Single head: same demographics \rightarrow same neuropathophysiology
- Multiple heads to model greater heterogeneity
- *Query Diversity Loss*: encourage *K* different attention heads to capture different underlying neuropathological modes:

$$L_{QD} = \sum_{i=1}^{N} \sum_{j=1}^{K-1} \sum_{k=j+1}^{K} \left| \frac{q_{ij}^{T} q_{ik}}{\|q_{ij}\| \|q_{ik}\|} \right| \qquad q_{ij} = W_{q_j} d_i$$

= Query vector for subject attention mode j
• Total loss: $L = L_C + \lambda L_{QD}$
Binary cross-entropy 0.5 in experiments

Yale school of medicine

Interpretation of Demographic-Guided Attention as Neuropathological Heterogeneity

- LSTM node *f* : represents functional network
 - Assign membership by large LSTM weights of ROI inputs¹

- LSTM output *h*(*f*): signal for functional network *f*
- Demographic information provides context for deciding which functional networks are important for ASD classification
 - c(f): demographic-guided attention to functional network f
 - Observe correlation between *d*(*i*) and *c*(*f*) across subjects

Datasets and Preprocessing

- Resting-state fMRI from multisite ABIDE I Dataset
- 3 Datasets from 3 prior publications
 - DS1¹: N = 1100, CCS Pipeline, CC200 atlas
 - DS2²: N = 1035, CPAC Pipeline, CC200 atlas
 - DS₃³: N = 860, CPAC Pipeline, HO atlas
- Standardize ROI mean time-series, resample at 2s interval
- Training: augment x10 by randomly cropping 3 min windows
- Inference: predict using all 3 min windows
- Demographic data: gender, age, handedness, full IQ, verbal IQ, performance IQ, eye status
 - Standardized to [-1,1]

Model	Identifying	g A
$Orig^{\dagger}$ [9]	Published results	ıg ı
LSTM [5	Nicha C. D	vorne
DFuse [7		
DInit [6]		
DGA1-C	DS2	
DGA2-C	Identification of autism spectrum	De
DGA1	digordor using door looming and	m
DGA2		111
DGA2-QI	L the ABIDE dataset	Da

Anibal Sólon Heinsfeld ^a, Alexandre Rosa Franco ^{b, c, d}, R. Cameron Craddock ^{f, g}, Augusto Buchweitz ^{b, d, e}, Felipe Meneguzzi ^{a, b} \otimes \boxtimes

DS1

lentifying Autism from Resting-State fMRI Using Long Short-Term Memory Networks

Nicha C. Dvornek^{1(⊠)}, Pamela Ventola², Kevin A. Pelphrey³, and James S. Duncan^{1,4,5}

DS3

Deriving reproducible biomarkers from multi-site resting-state data: An Autismbased example

Alexandre Abraham ^{a, b} \otimes \boxtimes , Michael P. Milham ^{e, f}, Adriana Di Martino ^g, R. Cameron Craddock ^{e, f}, Dimitris Samaras ^{c, d}, Bertrand Thirion ^{a, b}, Gael Varoquaux ^{a, b}

Evaluation of implemented models

- Leave-one-site-out (LOSO) cross-validation (CV), repeated 5 times
- Averaged performance measures for each site across CV runs
- Paired two-tailed t-tests to compare models

DS2 Classification Results

Table 2: DS2 Classification Results (N = 1035, 48.8% ASD)

	Leave-One-Site-Out				Weighted by # Subjects/Site		
Model	Mean (Std)	Mean (Std)	Mean (Std)	Mean (Std)	Mean (Std)	Mean (Std)	Mean (Std)
	ACC (%)	$\mathrm{TPR}~(\%)$	TNR $(\%)$	AUC	ACC (%)	$\mathrm{TPR}~(\%)$	TNR $(\%)$
$\operatorname{Orig}^{\dagger}[9]$	65 (1.5)	69(2.6)	62 (2.7)	-	65.4(1.3)	68.1 (2.6)	62.3(2.6)
LSTM $[5]$	63.6 (0.5)	55.2(1.6)	71.9(0.6)	0.709(0.006)	65.6(0.6)	58.2(1.7)	72.7 (0.9)
DFuse [7]	65.5 (0.9) *	57.1 (0.6)	73.5(1.6)	$0.713 \ (0.006)$	67.2(0.6)	61.2(1.2)	72.8(1.0)
DInit [6]	65.8(0.8) *	58.1 (0.4)	72.9(1.4)	0.720(0.009)	$67.5~(1.1)$ *	61.8 (1.6) *	72.9(3.2)
DGA1-C	65.6(1.7) *	$61.1 \ (1.6)$	69.6(1.1)	$0.713\ (0.011)$	66.8(1.6)	$64.1~(2.0)$ *	69.3(1.9)
DGA2-C	65.8 (0.9) *	52.6(2.4)	$78.3\ (1.7)\ ^{*}$	$0.719 \ (0.009)$	67.2 (1.2) *	55.9~(2.4)	$78.0\;(0.8)$ *
DGA1	66.1 (1.5) *	$61.3~(2.5)$ *	70.4(1.4)	0.719(0.011)	67.4 (1.7) *	63.6 (2.3) *	70.9(1.7)
DGA2	65.5 (1.0) *	54.3(1.5)	76.5 (1.4) *	$0.716\ (0.015)$	67.1(1.4)	57.6(1.3)	76.1 (2.3) *
DGA2-QDL	66.4~(0.4) *	58.0 (1.9) *	74.2(2.0)	0.722 (0.006)	67.4 (0.5) *	61.3 (1.7) *	73.1(1.9)

* Higher compared to LSTM with no demographics (*p* < 0.05) [†] Taken from literature, reflects 1 round of LOSO CV

Networks with Demographic-guided Heterogeneity of Functional Processing

Different modes of response for functional network modulated by demographics may point to different mechanisms of ASD pathophysiology

Conclusions

- What we did:
 - Novel demographic-guided attention mechanism for modeling heterogeneity in neuropathophysiology
 - Achieved higher ASD classification performance on several ABIDE datasets under different preprocessing pipelines using LOSO CV
- What this means:
 - Improved generalization to data from new imaging sites
 - Different neural mechanisms may explain in part difficulty in classification and conflicting ASD literature
- What's next:
 - Include other phenotypic information (e.g., genetic, behavior scores)
 - Deeper analysis of changes in functional network patterns

Yale school of medicine

Thank you!

- NIH Grants R01 MH100028 and R01 NS035193
- Contact: nicha.dvornek@yale.edu

