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Abstract. Heterogeneous presentation of a neurological disorder sug-
gests potential differences in the underlying pathophysiological changes
that occur in the brain. We propose to model heterogeneous patterns
of functional network differences using a demographic-guided attention
(DGA) mechanism for recurrent neural network models for prediction
from functional magnetic resonance imaging (fMRI) time-series data.
The context computed from the DGA head is used to help focus on
the appropriate functional networks based on individual demographic
information. We demonstrate improved classification on 3 subsets of the
ABIDE I dataset used in published studies that have previously produced
state-of-the-art results, evaluating performance under a leave-one-site-
out cross-validation framework for better generalizeability to new data.
Finally, we provide examples of interpreting functional network differ-
ences based on individual demographic variables.

1 Introduction

Functional magnetic resonance imaging (fMRI) has begun to play a large role in
characterizing the neuropathophysiology of psychiatric disorders. One example
is in the characterization of autism spectrum disorder (ASD), a neurodevel-
opmental disorder that affects communication and behavior. ASD is extremely
heterogeneous, presenting with a wide range of symptoms and severity of impair-
ments. Early fMRI studies investigated small datasets with imposed homogene-
ity, e.g., restricting to one gender, age group, or level of functioning. However,
this resulted in smaller datasets, largely irreproducible results and lack of gener-
alization to new datasets. More recently, the popular large public Autism Brain
Imaging Data Exchange (ABIDE) I resting-state fMRI dataset [4] has under-
gone extensive analysis, including the application of machine learning to classify
ASD and healthy controls (HC) for the purpose of discovering neuroimaging
biomarkers of ASD. However, even with the large amount of neuroimaging data,
achieving high classification performance has been a challenge, likely due in part



to both the heterogeneity of the sample populations of each imaging site and
the heterogeneity of the underlying neurological mechanisms of the disorder it-
self. Evidence for these potential reasons includes the much poorer performance
of leave-one-site-out cross-validation (LOSO CV) compared to intrasite k-fold
cross-validation [1,9].

One approach to mitigating the heterogeneity is to incorporate demographic
information into the classification problem. Here, we refer to demographic vari-
ables as non-imaging, scalar variables that are often measured and easy to ob-
tain, such as gender, age, or IQ. Demographic information can be incorporated
in different ways depending on the classification model. For example, the demo-
graphic information can be fused at different layers in a standard feedforward
neural network [7,12] or used as targets for prediction [7]. Furthermore, demo-
graphic information can be combined in model specific ways, e.g., to define the
edges in graph-based models [13] or to set the initial state of recurrent neural
network models [11,6]. However, none of these approaches aim to modulate the
underlying neurological differences that may be describing the heterogeneity in
ASD.

To model disorder heterogeneity in terms of changes in the underlying func-
tional processing, we propose a demographic-guided attention module to enhance
a recurrent neural network model for processing fMRI time-series data. While
the attention scores are computed across time, we can interpret the resulting
context as guiding attention to different functional networks. In addition to us-
ing the demographic information to help identify which functional networks to
attend to in classifying ASD or HC, we propose a novel loss for computing more
diverse queries for each attention head to better model the sample heterogene-
ity. We compare our proposed methods to other ways of handling demographic
data on 3 subsets of the ABIDE dataset, matched to previous studies that have
previously demonstrated state-of-the-art results from the fMRI data alone. We
achieve some of the highest accuracy of ABIDE classification under LOSO CV.
Finally, we give examples of functional networks that may undergo diverse pro-
cessing in ASD based on individual demographic factors.

2 Methods

We build on recent models for predicting from fMRI time-series data that use
recurrent neural networks with long short-term memory (LSTM). To model the
heterogeneity of ASD, we apply a generalized attention mechanism that is guided
by individual demographic characteristics. The context learned from the atten-
tion mechanism is then used to bias the LSTM outputs, allowing the model to
focus on different functional networks based on individual non-imaging charac-
teristics (Fig. 1).

2.1 Network Architecture

Baseline LSTM for fMRI Time-Series The baseline LSTM network to
predict from fMRI time-series was first proposed by Dvornek et al. [5]. The fMRI
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Fig. 1: Demographic-guided attention network for classification of ASD/HC from fMRI.

time-series with length 7' from regions of interest (ROIs) in a predefined brain
parcellation is first input to the LSTM layer. Then the output of the LSTM cell
at each timepoint h; € R™ is input to a fully connected (FC) layer with weights
shared across time. The outputs of the FC layer are averaged across time and
input to a sigmoid activation function to produce the probability of ASD label.

Demographic-Guided Attention We propose to incorporate functional net-
work differences resulting from disease heterogeneity through a generalized at-
tention mechanism [14]. The attention mechanism can be described as a function
mapping a query and key-value pair to some output, often referred to as the con-
text or a head. In our work, the query is defined by the demographic information,
and the key and value are defined by the outputs of the LSTM layer h;. Applying
the scaled dot product attention [14], the context vector ¢ is computed by
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where d € R! is the vector of demographic information; softmax [a;] = exp(ar)/ > exp(ay)
j=1
with a; = Wed)" (Wihe)/ /m; and W, € R™< W, € R™*™ and W, € R™*™ are
weight matrices that operate on d or h; to define the query, key, and value
vectors, respectively. In this work, we set m = n.

Residual Connection for Modeling Heterogeneity In standard attention
approaches, the context vector is concatenated with the LSTM output [2] or
the context vectors alone [14] are used as input to the following layers. Here,
we propose to use the context to bias the output of the LSTM layer, changing
the focus on LSTM nodes that should be emphasized based on the demographic
information. We do this by simply adding a residual connection betwen the
output of each attention head k and the output of the LSTM layer, ¢ + h; (Fig.



1, orange path). The summed outputs are then processed in a similar way as
the baseline LSTM model, using a FC layer with shared weights and averaging
the FC outputs over time. If multiple attention heads are used, then each head
is separately processed with a different FC layer, and the maximum score across
the heads is passed to the sigmoid layer to represent probability of ASD. The
rationale for keeping the maximum score is that only one mode of functional
network patterns may be indicative of ASD.

2.2 Query Diversity Loss

A single attention module allows for attending to different LSTM nodes based on
the demographic information. However, this assumes then that two individuals
with the same demographic profile must share the same underlying neuropathol-
ogy. To allow for even greater diversity in modeling disease heterogeneity, we can
include more attention heads that will learn different contexts. To encourage
the different attention heads to capture different underlying neuropathological
modes, we propose the following query diversity loss (QDL):
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where N is the number of subjects and ¢;; = W, d; is the n-dimensional query

vector for attention head j. QDL computes the cosine proximity for all query

vectors ¢;; for subject i. Minimizing QDL thus encourages projection of the de-

mographic information into orthogonal subspaces, which capture complementary

information, before comparing to the keys to compute the attention scores.
The total loss L is then

L:Lc—l—)\LQD, (3)

where L¢ is the classification loss (e.g., binary cross-entropy) and A is a hyper-
parameter controlling the contribution of QDL.

2.3 Interpretation of Attention as Neuropathological Heterogeneity

We first interpret each node of the LSTM as modeling a functional network.
While different attribution methods can be applied, we follow Dvornek et al.
and assign ROIs to a network if the LSTM weights for the ROI inputs have
large magnitude (> 3 standard deviations above mean weight magnitude) [5].
The proposed model uses the context computed by the demographic-guided
attention module as a bias for the LSTM outputs. Since each node of the LSTM
is interpreted as processing the signal corresponding to some functional net-
work, we interpret the demographic information as providing context for decid-
ing which functional networks should be given more attention in performing ASD
classification, i.e., we measure the demographic-guided attention to a functional
network f as ¢ (f). We then assess the coupling between a functional network and



a demographic variable by computing the correlation between the demographic
variable d (i) and the context ¢ (f) for functional network f across subjects. Dif-
ferent patterns of attention for a functional network in different attention heads
allows for modeling greater neuropathological heterogeneity.

3 Experiments

3.1 Data

We use resting-state fMRI data from the multisite ABIDE I dataset [4] which
was released by the Preprocessed Connectomes Project [3]. To demonstrate ro-
bustness of our approach and directly compare with results from the literature,
we analyzed the same subsets of data under the same preprocessing conditions
as in 3 prior studies: Dataset 1 (DS1) from [5], with N = 1100 subjects, prepro-
cessed using the Connectome Computation System pipeline, band-pass filtering
and no global signal regression, and parcellated with the CC200 atlas; Dataset
2 (DS2) from [9], with N = 1035 subjects, preprocessed using the Configurable
Pipeline for the Analysis of Connectomes, band-pass filtering and global signal
regression, and parcellated with the CC200 atlas; and Dataset 3 (DS3) from
[1], with N = 870 subjects, preprocessed using the same pipeline as in [9] but
parcellated with the HO atlas.

The time-series for each ROI of each subject was standardized by subtracting
the mean and dividng by the standard deviation and resampled to 2s intervals
between time points to harmonize the sampling across acquisition sites. We aug-
mented the dataset by a factor of 10 during training by extracting 10 randomly
cropped windows with length 7" = 90 timepoints from each subject during each
epoch. At test time, every possible window of 90 timepoints is extracted from the
time-series data for each subject and input to the trained network. The predicted
probability of ASD for a given subject was then computed as the proportion of
windowed samples classified as ASD.

Demographic information included gender, age, handedness, full 1Q, verbal
1Q, performance 1Q, and eye status during scanning. Missing I1Q data were im-
puted based on other available IQ scores for the subject, where we approximated
full IQ as the average of verbal IQ and performance IQ, and subjects with no
available IQ scores were assigned scores of 100, which is the mean population
IQ. Each demographic variable was standardized to lie in the range of [-1,1].

3.2 Experimental Methods

Models for classification of ASD vs. HC were trained for each subset of the
ABIDE dataset. We compared and implemented the following models which have
the same underlying LSTM baseline architecture and incorporate demographic
information: the proposed demographic-guided attention network (DGA); the
DGA network without the residual connection, i.e. using the computed con-
text alone (DGA-C); the baseline LSTM network combined with separately pro-
cessed demographic information through late fusion as proposed in [7] (DFuse);



the baseline LSTM network with the hidden state and cell state of the LSTM
initialized based on the demographic information as proposed in [6] (DInit).
Models were implemented in Keras, with 32 nodes for the LSTM. For regularzi-
ation, models were trained using a dropout layer before each fully connected
layer (with 0.5 probability of node dropout). Optimization was performed using
the Adam optimizer, with binary cross-entropy loss or with QDL as in Eq. 3 for
DGAZ2, a batch size of 32, and early stopping based on validation loss and a pa-
tience of 5 epochs. DGA-based models were tested with 1 (DGA1) or 2 (DGA2)
attention heads and QDL with A = 0.5 (DGA2-QDL). In addition, we compared
the original study for each dataset that used only imaging information.

To assess the implemented models, we used LOSO CV, repeating the CV
5 times and averaging the performance measures for each site across CV runs
both with and without weighting by the number of subjects per test site. We
chose the LOSO framework to better estimate the model generalizeability com-
pared to the commonly employed stratified k-fold cross-validation, which gives
overoptimistic results. We measured classification performance by computing the
accuracy (ACC), true positive rate (TPR), true negative rate (TNR), and area
under the receiver operating characteristic curve (AUC). We tested for differ-
ences against the baseline LSTM model by comparing the performance for the
same left-out sites using two-tailed paired t-tests with a significance level of 0.05.

We also evaluated functional networks that were attended to based on indi-
vidual demographic factors by applying the Neurosynth decoder [15], which cor-
relates over 14000 fMRI studies with 1300 descriptors. For the 2-head attention
model with QDL loss, we computed the correlation between the demographic
variable d (7) and the context for functional network f from each head ¢; (f) and
co (f) across the test ASD subjects. We analyzed the US and Yale site as their
test accuracy was high (> 75%) and they contained significant heterogeneity for
the investigated demographic variables of age, gender, handedness, and full 1Q.
We then found the functional network f that resulted in the largest difference
in correlation values for the 2 heads. The binary mask of the functional network
of interest was then input to Neurosynth to assess neurocognitive processes as-
sociated with different modes of heterogeneity in ASD.

3.3 Classification Results

Classification results for each dataset are summarized in Tables 1-3. The results
using the method from the original study for DS1 and published in the original
study for DS2 and DS3 use only fMRI data and are shown in the first entry. We
notice that generally, the fusion model DFuse and LSTM initialization model
DInit do not perform significantly differently from the baseline LSTM model,
particularly for DS3. The DGA-based models that use the context alone as the
input to the FC (DGA1-C and DGA2-C) tend to perform about the same (DS1)
or better (DS2 and DS3) than the non-DGA models. Adding in the residual
connection for DGA1 and DGA2 results in similar (DS1 and DS2) or better
(DS3) results than the DGA-C models. Finally, the DGA2-QDL model resulted
in the top performance for DS1 and DS2 as measured by accuracy and AUC.



Table 1: DS1 Classification Results (N = 1100, 48.1% ASD)

Leave-One-Site-Out Weighted by # Subjects/Site
Model Mean (Std) | Mean (Std) | Mean (Std) | Mean (Std) || Mean (Std) | Mean (Std) | Mean (Std)
ACC (%) | TPR (%) | TNR (%) AUC ACC (%) | TPR (%) | TNR (%)
Orig (LSTM) [5]|| 634 (0.7) | 60.9 (1.2) | 66.2 (0.5) | 0.695 (0.006) || 65.0 (0.7) | 61.3(1.3) | 68.4 (1.2)
DFuse [7] 63.3 (1.2) | 55.7 (3.3) ° | 70.7 (2.5) * | 0.701 (0.017) || 65.4 (1.3) | 57.7 (3.3) | 72.5 (3.3)
Dinit (6] 65.4 (0.6) * | 60.7 (1.2) | 69.9 (0.6) * | 0.709 (0.006) [|67.1 (0.7) *| 62.6 (2.4) | 71.3 (2.5) *
DGAI-C 64.4 (0.7) | 62.5 (0.6) | 66.3 (1.5) | 0.710 (0.009) || 65.9 (0.5) | 63.5 (1.4) | 68.1 (0.9)
DGA2-C 643 (1.2) | 56.2 (2.3) ° | 71.8 (3.0) * | 0.703 (0.006) || 65.8 (1.1) | 57.3 (1.7) ° | 73.8 (3.0) *
DGAIL 638 (0.9) | 615 (2.9) | 66.1(1.9) | 0.702 (0.009) || 65.7 (1.1) | 63.5 (3.0) | 67.7 (2.7)
DGA2 648 (24) | 56.1 (3.8) |73.1 (2.1) *| 0.710 (0.011) || 66.3 (1.6) | 57.1 (3.2) ° |74.8 (2.5) *
DGA2-QDL ||65.5 (0.8) *| 50.1 (2.3) | 72.0 (2.4) * |0.711 (0.006)| 66.8 (0.7) * | 60.7 (1.3) | 72.4 (1.9)

* Significantly different compared to LSTM with no demographic input (p < 0.05),
with larger mean value.

¢ Significantly different compared to LSTM with no demographic input (p < 0.05),
with smaller mean value.

Table 2: DS2 Classification Results (N = 1035, 48.8% ASD)

Leave-One-Site-Out Weighted by # Subjects/Site
Model Mean (Std) | Mean (Std) | Mean (Std) | Mean (Std) || Mean (Std) | Mean (Std) | Mean (Std)
ACC (%) TPR (%) TNR (%) AUC ACC (%) TPR (%) TNR (%)

Orig' [9] 65 (1.5) 69 (2.6) 62 (2.7) - 65.4 (1.3) | 68.1(2.6) | 62.3 (2.6)
LSTM [5] || 63.6 (0.5) | 55.2 (1.6) | 71.9 (0.6) |0.709 (0.006) | 65.6 (0.6) | 582 (1.7) | 72.7 (0.9)
DFuse [7] || 65.5 (0.9) * | 57.1 (0.6) | 73.5 (1.6) |0.713 (0.006)| 67.2 (0.6) | 61.2 (1.2) | 72.8 (1.0)
DInit [6] || 65.8 (0.8) * | 58.1 (0.4) | 72.9 (1.4) |0.720 (0.009) [67.5 (1.1) *| 61.8 (1.6) * | 72.9 (3.2)
DGAI-C || 65.6 (1.7) * | 61.1(1.6) | 69.6 (1.1) |0.713 (0.011)| 66.8 (1.6) |64.1 (2.0) *| 69.3 (1.9)
DGA2-C |[65.8 (0.9) * | 52.6 (2.4) |78.3 (1.7) *|0.719 (0.009) || 67.2 (1.2) * | 55.9 (2.4) |78.0 (0.8) *
DGA1 || 66.1 (1.5) * |61.3 (2.5) *| 70.4 (1.4) |0.719 (0.011) || 67.4 (1.7) * | 63.6 (2.3) * | 70.9 (1.7)
DGA2 || 655 (1.0) * | 54.3 (1.5) | 76.5 (1.4) * | 0.716 (0.015)|| 67.1 (1.4) | 57.6 (1.3) | 76.1 (2.3) *
DGA2-QDL|[66.4 (0.4) *| 58.0 (1.9) * | 74.2 (2.0) |0.722 (0.006)]| 67.4 (0.5) * | 61.3 (1.7) * | 73.1 (1.9)

 Values taken from the literature, reflecting one round of LOSO CV.
* Significantly different compared to LSTM with no demographic input (p < 0.05).

To better understand the performance over all the datasets, we scored each
model by the number of performance measures that significantly improved over
the baseline LSTM, minus the number of measures that significantly worsened
compared to baseline, plus the number of top ranked measures. The models
ranked in order of increasing performance was then DFuse, DGA2-C, DInit,
DGA1-C, DGA1, DGA2-QDL, DGA2. Thus, DGA-based models generally per-
formed better than other demographic models; 2-headed attention was generally
better than 1; and the proposed residual connection for using the context as a
bias to the LSTM outputs generally performed better than using the context
alone. The reason for DGA2-QDL’s lower ranking is due to the performance on
DS3; we posit that the lower number of subjects in this dataset led to less het-
erogeneity, thus making it difficult to find two disparate attention modes, which
QDL is trying to recover by minimizing the projection space similarity.



Table 3: DS3 Classification Results (N = 860, 46.1% ASD)

Leave-One-Site-Out Weighted by # Subjects/Site
Model Mean (Std) | Mean (Std) | Mean (Std) | Mean (Std) || Mean (Std) | Mean (Std) | Mean (Std)
ACC (%) TPR (%) TNR (%) AUC ACC (%) TPR (%) TNR (%)

Orig’ [1] 63.6 (6.2) | 59.8 (10.3) | 66.7 (12.8) - - - -
LSTM [5] || 63.8 (0.4) | 50.3 (1.9) | 75.5 (1.4) | 0.694 (0.012) | 65.3 (0.6) | 53.9 (2.3) | 75.0 (1.9)
DFuse [7] || 65.6 (1.6) | 52.7 (1.8) | 76.4 (3.0) | 0.714 (0.007) || 67.1 (0.8) * | 56.9 (2.5) | 75.8 (1.4)
DInit [6] || 64.5 (1.2) | 50.5 (2.2) | 76.4 (1.9) | 0.702 (0.013) || 66.3 (0.8) | 55.5 (2.4) | 75.5 (2.4)
)
)

DGA1-C || 65.5 (1.2) * [55.3 (1.6) *| 74.5 (2.1) | 0.708 (0.010) || 66.8 (0.9) * | 59.0 (2.4) * | 73.5 (3.4
DGA2-C || 65.9 (1.6) | 52.6 (1.7) | 78.6 (2.0) |0.717 (0.014)|| 67.2 (1.2) | 55.2 (1.8) | 78.6 (1.5
DGA1 || 65.8 (0.1) * [55.3 (1.1) *| 75.2 (1.2) | 0.712 (0.006) || 66.8 (0.7) * [59.1 (1.8) *| 73.3 (1.5)
DGA2  [66.8 (1.0) *| 51.2 (2.1) [80.0 (2.7) *| 0.714 (0.005) |[68.0 (1.0) *| 54.0 (2.5) [80.0 (2.7) *
DGA2-QDL| 66.0 (1.1) | 53.5 (1.4) 76.8 (3) | 0.709 (0.006) || 67.0 (0.9) * | 57.6 (2.9) | 75.2 (3.3)
T Values obtained from corresponding author of [1], reflecting one round of LOSO CV.
* Significantly different compared to LSTM with no demographic input (p < 0.05).

Autobiographical Memory, Default Mode Face Recognition, Visual

(a) US site, Age (b) US site, IQ

Visual Perception, Face Fearful, Happy

(c) Yale site, Gender (d) Yale site, Handedness

Fig. 2: Functional networks from the DGA2-QDL model trained on DS2 which had
largest difference between the correlations of the listed demographic variable with the
two attention measures c1 (f) and ¢z (f) for ASD subjects in the listed test site. The
top associated cognitive functions decoded by Neurosynth for each network are shown.

3.4 Demographic-guided Heterogeneity of Functional Processing

We explored the functional networks from the best model for DS2, DGA2-QDL,
that corresponded to the most diverse outputs by the 2 attention heads. These
different modes of the model’s response to a functional network may correspond
to potentially different mechanisms of ASD pathophysiology. Resulting func-
tional networks and the top 2 associated Neurosynth cognitive terms are shown
in Fig. 2. The functional networks highlight regions that are often associated
with ASD (e.g., Fig. 2(b) and (c), visual perception and face processing [10]),
and are also potentially associated with the demographic variable of interest
(e.g., Fig. 2(a), default mode network changes with age [8]).




4 Conclusions

We have presented a novel demographic-guided attention mechanism for mod-
eling the heterogeneity in neuropathophysiology of ASD. We achieved higher
ASD classification performance on several ABIDE datasets and preprocessing
conditions under a leave-one-site-out cross-validation framework, demonstrating
improved generalization to data from new imaging sites. The success of having
multiple attention modes for modeling the different neural mechanisms associ-
ated with ASD may help partially explain some of the conflicting results in the
ASD literature (e.g., hyper- vs. hypo-connectivity), as our classification models
improve once we account for the heterogeneity of the disorder.
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