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Investigate Neurological Disorders/Diseases with 
Functional MRI + Machine Learning
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Challenge: How to Handle Limited Sample Size + 
Deep Learning from fMRI?

Recurrent Neural Network with 
Long Short-Term Memory (LSTM)
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1

Machine Learning
Algorithm

Difficulties in gathering large fMRI datasets
• Time and cost for acquisition, annotation
• Special cohorts: disease/disorder, treatment, children…

fMRI

1Craddock et al., Nature Methods 2013
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Our Solution: Make Full Use of All the Data with 
Multitask Learning 

• Jointly learn shared information across related tasks

LSTM
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Our Solution: Make Full Use of All the Data with 
Multitask Learning 

• Jointly learn shared information across related tasks

LSTM

fMRI ROI
Mean Time Series

Brain Parcellation
1

Primary Task: DiscriminativefMRI

Auxiliary Task: Generative

+ No annotation required
+ Assist in interpreting discriminative model

1Craddock et al., Nature Methods 2013

ASD

HC



S L I D E  9

Jointly Discriminative and Generative RNN
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First LSTM Layer Models Interactions between 
Individual ROIs and Functional Communities 

• Input ROI data 𝑥𝑥𝑡𝑡 ∈ ℝ𝑅𝑅 into LSTM with K nodes
• Each LSTM node represents a functional community (group of 

ROIs that activate together)
• Community activity represented by hidden state ℎ𝑡𝑡 ∈ ℝ𝐾𝐾 and cell 

state 𝑐𝑐𝑡𝑡 ∈ ℝ𝐾𝐾

ℎ𝑡𝑡 , 𝑐𝑐𝑡𝑡 K nodes

R 
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Discriminative Path Learns ASD/HC Classification

Hidden state ℎ𝑡𝑡 of 
LSTM functional 
community layer used 
for discriminative task
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Generative Path Models fMRI ROI Time-Series

• Cell state 𝑐𝑐𝑇𝑇 of LSTM functional community layer used to 
generate ROI data at time 𝑇𝑇 + 1

• Constrain 𝑊𝑊𝑑𝑑 ≥ 0 to model only positive community influences

�𝑥𝑥𝑇𝑇+1 = 𝑊𝑊𝑑𝑑𝑐𝑐𝑇𝑇 + 𝑏𝑏𝑑𝑑

R nodes
R 

Graves A., “Generating Sequences With Recurrent Neural Networks,” 2014
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Training the Discriminative and Generative RNN

𝐿𝐿 = 𝐿𝐿𝐺𝐺 𝑥𝑥𝑇𝑇+1, �𝑥𝑥𝑇𝑇+1 + 𝜆𝜆𝐿𝐿𝐷𝐷 𝑦𝑦, �𝑦𝑦
MSE BCE0.1
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Training the Discriminative and Generative RNN

𝐿𝐿 = 𝐿𝐿𝐺𝐺 𝑥𝑥𝑇𝑇+1, �𝑥𝑥𝑇𝑇+1 + 𝜆𝜆𝐿𝐿𝐷𝐷 𝑦𝑦, �𝑦𝑦
MSE BCE

50 nodes
(communities)

20 nodes

0.1
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Extract Functional Communities Using Weights in 
Dense Layer of Generative Path

• What makes a community?
– Community member strongly influenced by its community
– Community strongly influenced by its members
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Extract Functional Communities Using Weights in 
Dense Layer of Generative Path

• What makes a community?
– Community member strongly influenced by its community
– Community strongly influenced by its members

• Assign ROI memberships to community k by K-means clustering of 
weights in column k of Wd
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Datasets and Preprocessing

• 4 Sites from Autism Brain Imaging Data Exchange (ABIDE) I
– NYU, UM, USM, UCLA (~100-200 subjects)

• Resting-state fMRI from Preprocessed Connectomes Project
– Connectome Computation System pipeline 
– Automated Anatomical Labeling (AAL) atlas (R = 116 ROIs)

• Standardized ROI mean time-series

1Craddock et al., Nature Methods 2013

1
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• 4 Sites from Autism Brain Imaging Data Exchange (ABIDE) I
– NYU, UM, USM, UCLA (~100-200 subjects)

• Resting-state fMRI from Preprocessed Connectomes Project
– Connectome Computation System pipeline 
– Automated Anatomical Labeling (AAL) atlas (R = 116 ROIs)

• Standardized ROI mean time-series
• Data augmented to 

~14,000-38,000 samples/site

Datasets and Preprocessing

1Craddock et al., Nature Methods 2013

1

~150-250x 
T = 30
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Experimental Methods: Compared Models Trained on 
Each Individual ABIDE Site

Network 
Variations
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Experimental Methods: Compared Models Trained on 
Each Individual ABIDE Site

𝒉𝒉𝒕𝒕

Dvornek et al., MLMI 2017
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Experimental Methods: Compared Models Trained on 
Each Individual ABIDE Site
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Experimental Methods: Compared Models Trained on 
Each Individual ABIDE Site

𝒉𝒉𝒕𝒕

fMRI ROI
Mean Time Series

Connectivity
Matrix

Linear
SVM

Hidden Markov Model
Stacked Autoencoders with Deep Transfer Learning

• Used same ABIDE site and AAL atlas
• Reported published values

Jun et al., 
NeuroImage 2019
Li et al., Front. 
Neurosci. 2018
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Experimental Methods: Compared Models Trained on 
Each Individual ABIDE Site

𝒉𝒉𝒕𝒕

fMRI ROI
Mean Time Series
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Matrix

Linear
SVM

Evaluation of implemented models
• 10-fold cross validation
• Paired t-tests to compare all folds 

from all datasets 
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Our Joint Learning Method Produced Consistently 
Good Results Across 4 Datasets
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Our Joint Learning Method Produced Consistently 
Good Results Across 4 Datasets

• Outperformed all non-generative models (ACC 𝑝𝑝 < 0.05)
• Only method to outperform original LSTM fMRI classification 

model (ACC 𝑝𝑝 = 0.04, TNR 𝑝𝑝 = 0.04)
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Our Communities are More Robust than Those Found 
by Tensor-Based Community Detection

• Compared the 50 communities found across CV folds

11% Increase in Dice
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Our Communities are More Robust than Those Found 
by Tensor-Based Community Detection

• Compared the 50 communities found across CV folds

• More reliable functional communities  better for interpretation

11% Increase in Dice

0.6
0.65

0.7
0.75

0.8

NY UM US UC

Dice Tensor LSTM
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Top Influential Communities for ASD Classification 
for NYU Dataset

• Communities are associated with neurocognitive processes affected 
in ASD

Social Memory Reward/Decision Making
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Conclusions

• What we did:
– Novel RNN-based network for jointly learning discriminative task and 

generative model for fMRI ROI time-series data
– Demonstrated higher ASD classification performance and more robust 

functional community estimation
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Conclusions

• What we did:
– Novel RNN-based network for jointly learning discriminative task and 

generative model for fMRI ROI time-series data
– Demonstrated higher ASD classification performance and more robust 

functional community estimation

• What this means:
– Can train more generalizable models on smaller fMRI datasets 
– Modeling reliable functional communities facilitates interpretation of 

discriminative model

• What’s next:
– Handle data from across imaging sites
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Thank you!

• NIH Grants T32 MH18268 and R01 NS035193
• Contact: nicha.dvornek@yale.edu
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