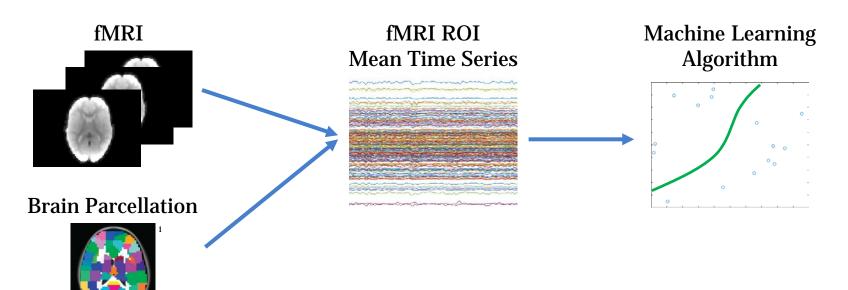
Jointly Discriminative and Generative Recurrent Neural Networks for Learning from fMRI

Nicha C. Dvornek, Xiaoxiao Li, Juntang Zhuang, and James S. Duncan

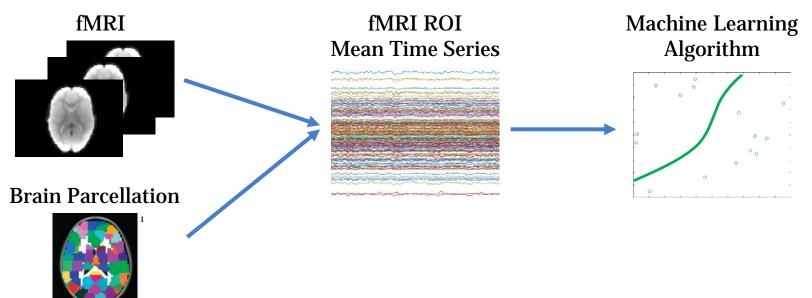
MLMI 2019 Shenzhen, China October 13, 2019

Jointly Discriminative and Generative Recurrent Neural Networks for Learning from fMRI

Nicha C. Dvornek, Xiaoxiao Li, Juntang Zhuang, and James S. Duncan

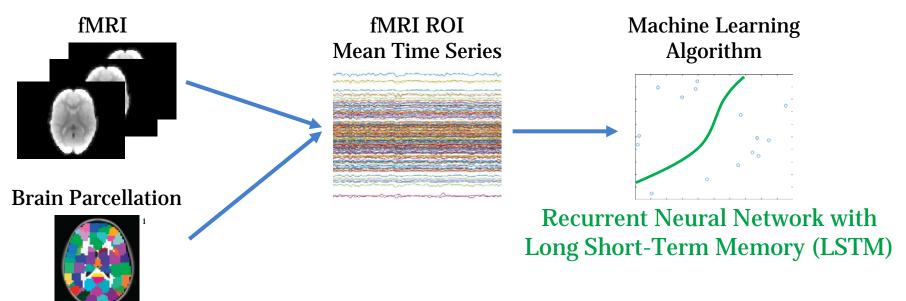


MLMI 2019 Shenzhen, China October 13, 2019



Yale school of medicine

Investigate Neurological Disorders/Diseases with Functional MRI + Machine Learning



Investigate Neurological Disorders/Diseases with Functional MRI + Machine Learning

Example applications: Classify disease state Identify biomarkers for disease

Investigate Neurological Disorders/Diseases with Functional MRI + Machine Learning

Example applications: Classify disease state Identify biomarkers for disease

Challenge: How to Handle Limited Sample Size + Deep Learning from fMRI?

fMRI ROI

Mean Time Series

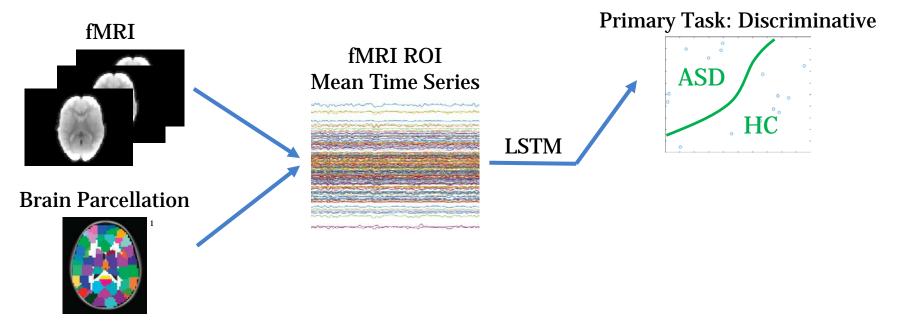
fMRI

Brain Parcellation

Difficulties in gathering large fMRI datasets

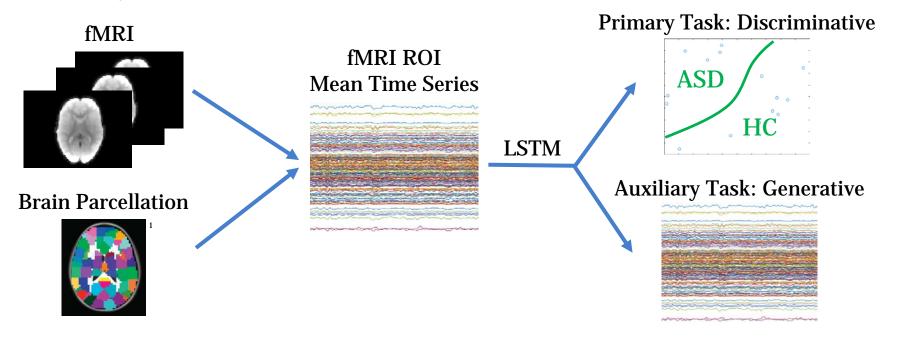
- Time and cost for acquisition, annotation
- Special cohorts: disease/disorder, treatment, children...

Machine Learning

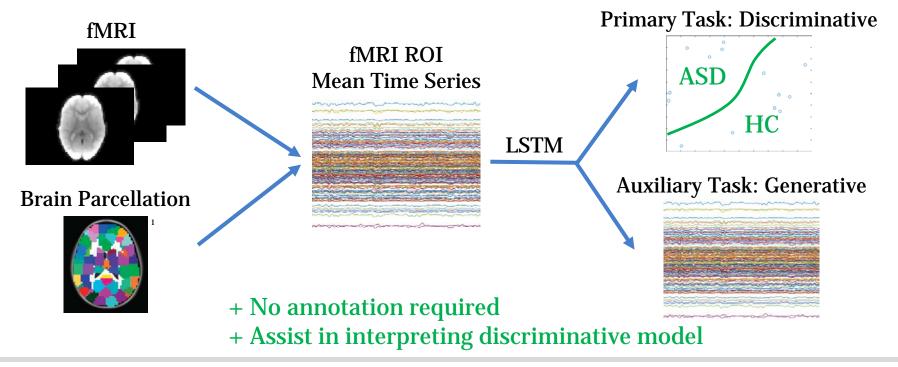

Algorithm

Recurrent Neural Network with

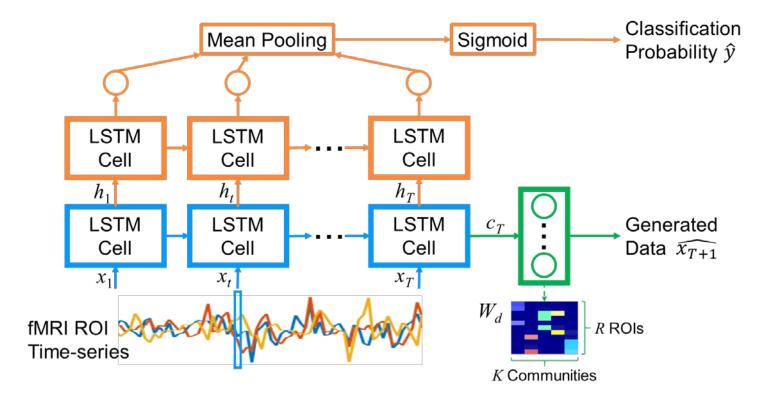
Long Short-Term Memory (LSTM)


Our Solution: Make Full Use of All the Data with *Multitask Learning*

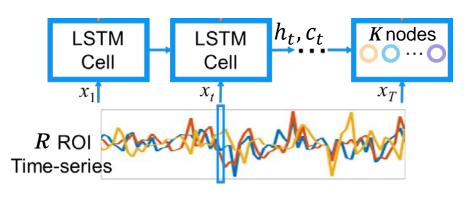
• Jointly learn shared information across related tasks

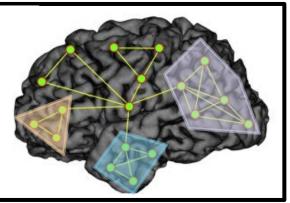

Our Solution: Make Full Use of All the Data with *Multitask Learning*

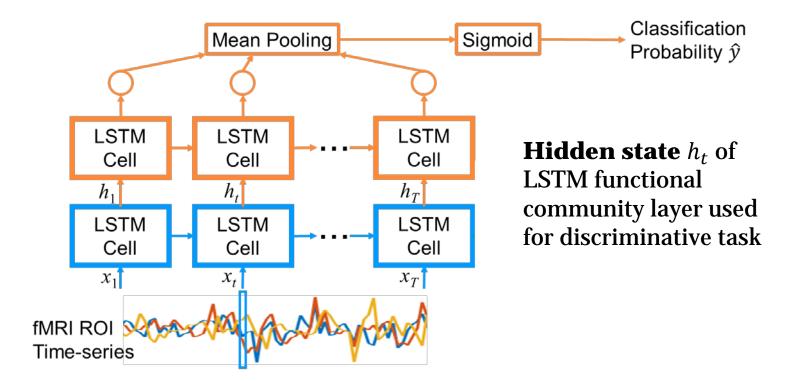
• Jointly learn shared information across related tasks


Our Solution: Make Full Use of All the Data with *Multitask Learning*

• Jointly learn shared information across related tasks


¹Craddock et al., Nature Methods 2013

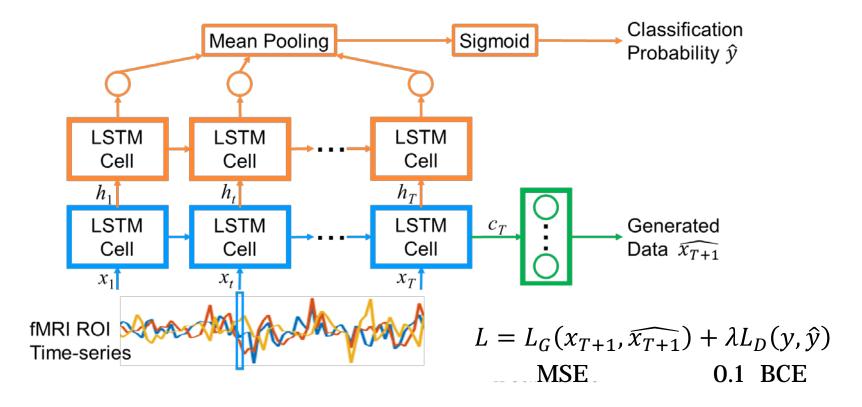

Jointly Discriminative and Generative RNN


First LSTM Layer Models Interactions between Individual ROIs and *Functional Communities*

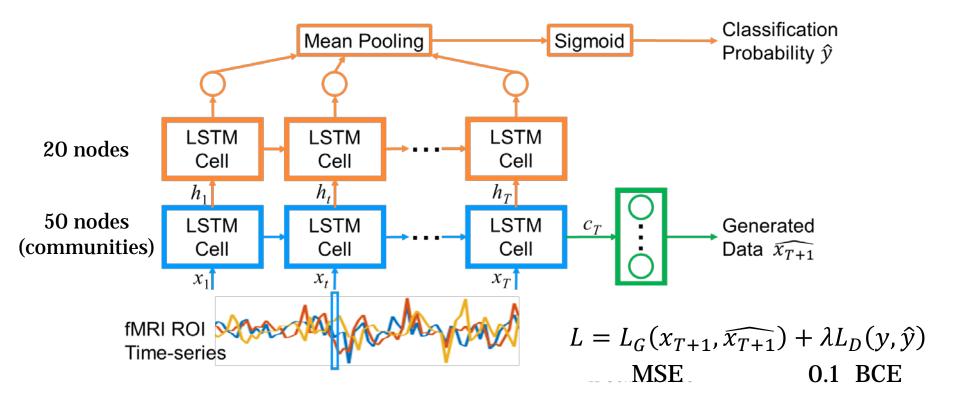
- Input ROI data $x_t \in \mathbb{R}^R$ into LSTM with *K* nodes
- Each LSTM node represents a functional community (group of ROIs that activate together)
- Community activity represented by hidden state $h_t \in \mathbb{R}^K$ and cell state $c_t \in \mathbb{R}^K$

Discriminative Path Learns ASD/HC Classification

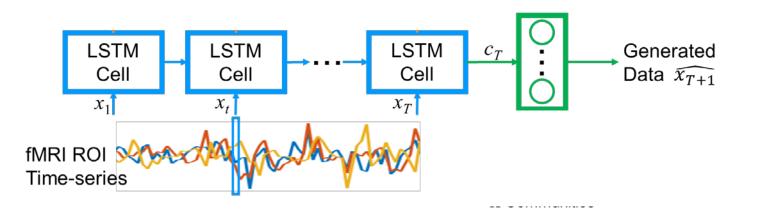
Generative Path Models fMRI ROI Time-Series


• **Cell state** c_T of LSTM functional community layer used to generate ROI data at time T + 1

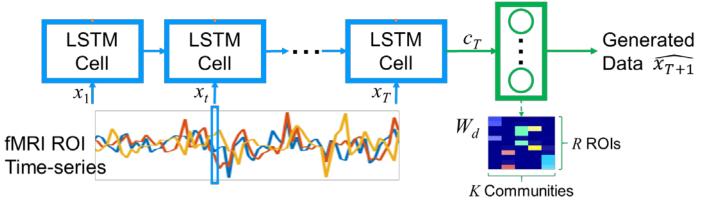
 $\widehat{x_{T+1}} = W_d c_T + b_d$


• Constrain $W_d \ge 0$ to model only positive community influences

Training the Discriminative and Generative RNN



Training the Discriminative and Generative RNN


Extract Functional Communities Using Weights in Dense Layer of Generative Path

- What makes a community?
 - Community member strongly influenced by its community
 - Community strongly influenced by its members

Extract Functional Communities Using Weights in Dense Layer of Generative Path

- What makes a community?
 - Community member strongly influenced by its community
 - Community strongly influenced by its members
- Assign ROI memberships to community k by K-means clustering of weights in column k of W_d

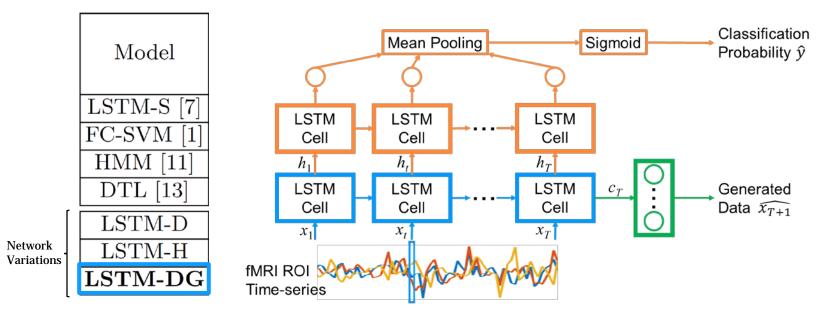
Datasets and Preprocessing

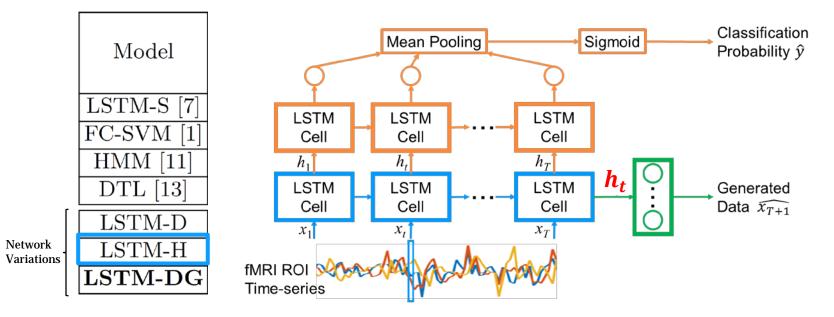
- 4 Sites from Autism Brain Imaging Data Exchange (ABIDE) I
 NYU, UM, USM, UCLA (~100-200 subjects)
- Resting-state fMRI from Preprocessed Connectomes Project
 - Connectome Computation System pipeline
 - Automated Anatomical Labeling (AAL) atlas (R = 116 ROIs)
- Standardized ROI mean time-series

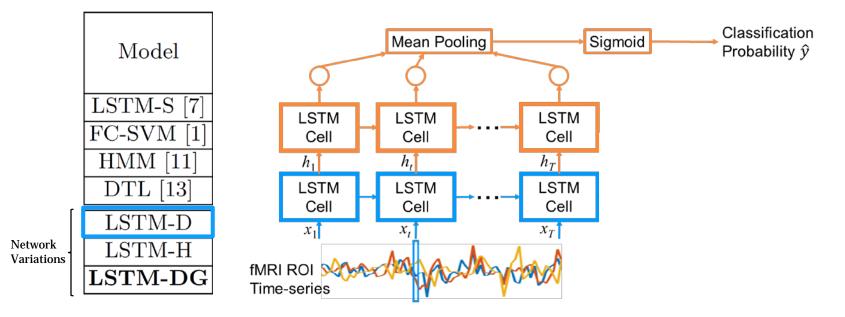


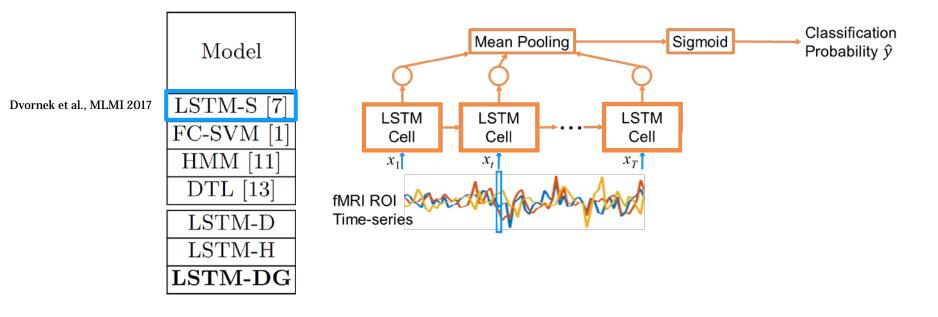
Datasets and Preprocessing

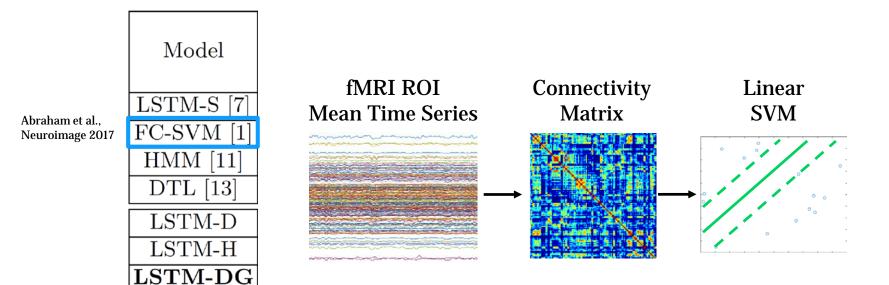
- 4 Sites from Autism Brain Imaging Data Exchange (ABIDE) I
 NYU, UM, USM, UCLA (~100-200 subjects)
- Resting-state fMRI from Preprocessed Connectomes Project
 - Connectome Computation System pipeline
 - Automated Anatomical Labeling (AAL) atlas (R = 116 ROIs)
- Standardized ROI mean time-series

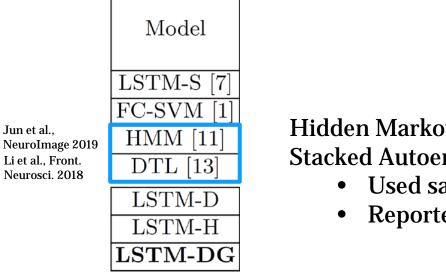

T = 30 \oint

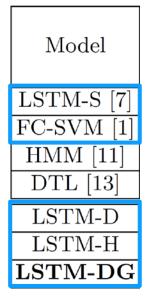

 Data augmented to ~14,000-38,000 samples/site




~150-250x


Yale





Hidden Markov Model

Stacked Autoencoders with Deep Transfer Learning

- Used same ABIDE site and AAL atlas.
- **Reported published values**

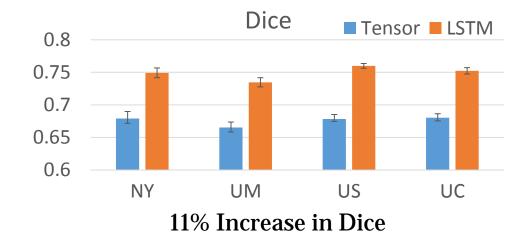
Evaluation of implemented models

- 10-fold cross validation
- Paired t-tests to compare all folds from all datasets

	UM (143 subjects, 46.2% ASD)			
Model	Mean (Std)	Mean (Std)	Mean (Std)	AUC
	ACC (%)	TPR $(\%)$	TNR $(\%)$	AUC
$\left \text{LSTM-S} \left[7 \right] \right $	69.8 (11.4)	56.7(24.2)	74.0(25.3)	0.740
$\left[\text{FC-SVM} \left[1 \right] \right]$	69.2 (12.0)	46.7(18.9)	89.8 (12.8)	0.713
HMM [11]	73.4(10.5)	68.5	76.9	0.738
DTL [13]	67.2	68.9	67.6	0.67
LSTM-D	67.0 (12.0)	52.9(22.2)	78.6(25.6)	0.738
LSTM-H	69.2(11.4)	57.9(14.5)	78.7(18.1)	0.777
LSTM-DG	74.8(10.0)	$60.8 \ (12.8)$	85.6(14.5)	0.774

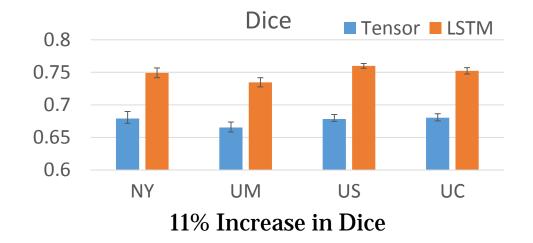
	UM (143 subjects, 46.2% ASD)			
Model	Mean (Std)	Mean (Std)	Mean (Std)	AUC
	ACC $(\%)$	TPR $(\%)$	TNR $(\%)$	AUU
$\left \text{LSTM-S} \left[7 \right] \right $	69.8 (11.4)	56.7(24.2)	74.0(25.3)	0.740
FC-SVM [1]	69.2 (12.0)	46.7(18.9)	89.8 (12.8)	0.713
HMM [11]	73.4(10.5)	68.5	76.9	0.738
DTL [13]	67.2	68.9	67.6	0.67
LSTM-D	67.0 (12.0)	52.9(22.2)	78.6(25.6)	0.738
LSTM-H	69.2(11.4)	57.9(14.5)	78.7(18.1)	0.777
LSTM-DG	$\overline{74.8}$ (10.0)	$60.8 \ (12.8)$	$85.6\ (14.5)$	0.774

	UM	M (143 subjects, 46.2% ASD)		
Model	Mean (Std)	Mean (Std)	Mean (Std)	AUC
	ACC (%)	TPR (%)	TNR (%)	AUU
LSTM-S $[7]$	69.8 (11.4)	56.7(24.2)	74.0(25.3)	0.740
FC-SVM [1]	69.2(12.0)	46.7(18.9)	89.8 (12.8)	0.713
HMM [11]	73.4(10.5)	68.5	76.9	0.738
DTL [13]	67.2	68.9	67.6	0.67
LSTM-D	67.0(12.0)	52.9(22.2)	78.6(25.6)	0.738
LSTM-H	69.2(11.4)	57.9(14.5)	78.7(18.1)	0.777
LSTM-DG	74.8(10.0)	$60.8 \ (12.8)$	85.6(14.5)	0.774


• Outperformed all non-generative models (ACC p < 0.05)

	UM (143 subjects, 46.2% ASD)			
Model	Mean (Std)	Mean (Std)	Mean (Std)	AUC
	ACC (%)	TPR (%)	TNR (%)	AUC
LSTM-S $[7]$	69.8 (11.4)	56.7(24.2)	74.0(25.3)	0.740
FC-SVM [1]	69.2 (12.0)	46.7(18.9)	89.8 (12.8)	0.713
HMM [11]	73.4(10.5)	68.5	76.9	0.738
DTL [13]	67.2	68.9	67.6	0.67
LSTM-D	67.0 (12.0)	52.9(22.2)	78.6(25.6)	0.738
LSTM-H	69.2(11.4)	57.9(14.5)	78.7(18.1)	0.777
LSTM-DG	74.8(10.0)	$60.8 \ (12.8)$	$85.6\ (14.5)$	0.774

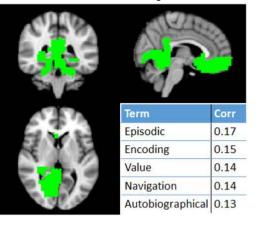
- Outperformed all non-generative models (ACC p < 0.05)
- Only method to outperform original LSTM fMRI classification model (ACC p = 0.04, TNR p = 0.04)


Our Communities are More Robust than Those Found by Tensor-Based Community Detection

• Compared the 50 communities found across CV folds

Our Communities are More Robust than Those Found by Tensor-Based Community Detection

• Compared the 50 communities found across CV folds


• More reliable functional communities \rightarrow better for interpretation

Top Influential Communities for ASD Classification for NYU Dataset

Social

ALL D		
AT 10.	Term	Corr
CH B	Semantic	0.22
A CONTRACTOR	Social	0.22
- Dur	Comprehension	0.22
100 M	Word form	0.2
A start	Sentence	0.19

Memory

Reward/Decision Making

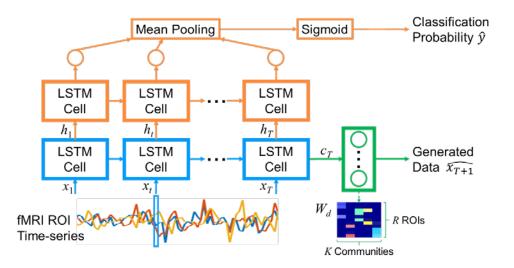
	S.	2
100	Term	Corr
S B	Value	0.29
Visio V	Reward	0.26
Suc.	Reinforcement	0.19
VON BAY	Choices	0.17
1000	Decision making	0.17

Communities are associated with neurocognitive processes affected in ASD

Conclusions

- What we did:
 - Novel RNN-based network for jointly learning discriminative task and generative model for fMRI ROI time-series data
 - Demonstrated higher ASD classification performance and more robust functional community estimation

Conclusions


- What we did:
 - Novel RNN-based network for jointly learning discriminative task and generative model for fMRI ROI time-series data
 - Demonstrated higher ASD classification performance and more robust functional community estimation
- What this means:
 - Can train more generalizable models on smaller fMRI datasets
 - Modeling reliable functional communities facilitates interpretation of discriminative model

Conclusions

- What we did:
 - Novel RNN-based network for jointly learning discriminative task and generative model for fMRI ROI time-series data
 - Demonstrated higher ASD classification performance and more robust functional community estimation
- What this means:
 - Can train more generalizable models on smaller fMRI datasets
 - Modeling reliable functional communities facilitates interpretation of discriminative model
- What's next:
 - Handle data from across imaging sites

Thank you!

- NIH Grants T32 MH18268 and R01 NS035193
- Contact: nicha.dvornek@yale.edu

