Prediction of Autism Treatment Response from Baseline fMRI using Random Forests and Tree Bagging

Nicha C. Dvornek, Daniel Yang, Archana Venkataraman, Pamela Ventola, Lawrence H. Staib, Kevin A. Pelphrey, and James S. Duncan

ML-CDS 2016: Multimodal Learning for Clinical Decision Support Athens, Greece October 17, 2016

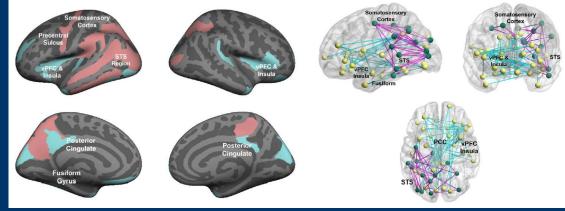
Autism Spectrum Disorder (ASD)

- Neurological developmental disorders characterized by impaired social interactions, difficulties in communication, and repetitive behaviors
- Promising treatment: Intensive behavioral therapies
 - e.g., Pivotal Response Therapy
 - Large commitment from patient and families
 - Early intervention is important
- However, ASD is complex!
 - No "one size fits all" treatment
 - Currently, choose therapy by trial and error
- \rightarrow Need for *precision medicine*

www.autismspeaks.org

Goal: Predict Autism Treatment Outcome from Baseline fMRI

fMRI has aided understanding of ASD pathophysiology

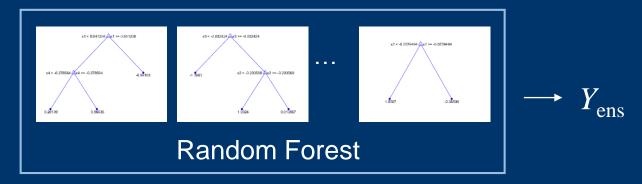


Venkataraman et al., TMI 2016

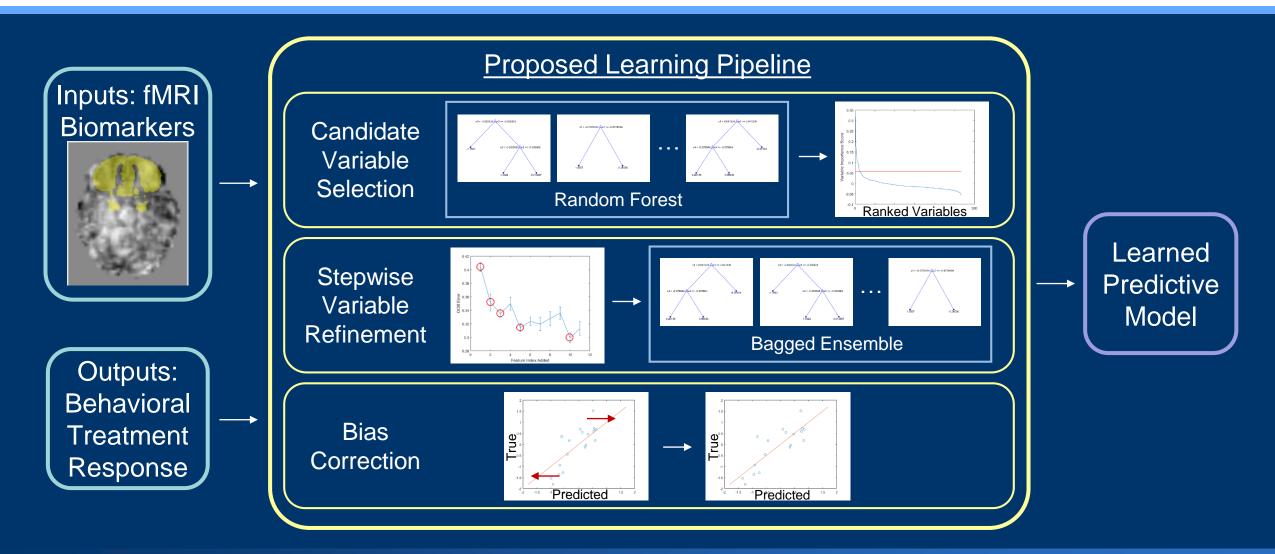
- fMRI for prediction
 - Changes in autistic traits [Plitt et al., PNAS 2015]
 - Treatment outcomes in other brain disorders [Ball et al., Neuropsych 2014]
 - \rightarrow We propose first use of fMRI for predicting ASD treatment response

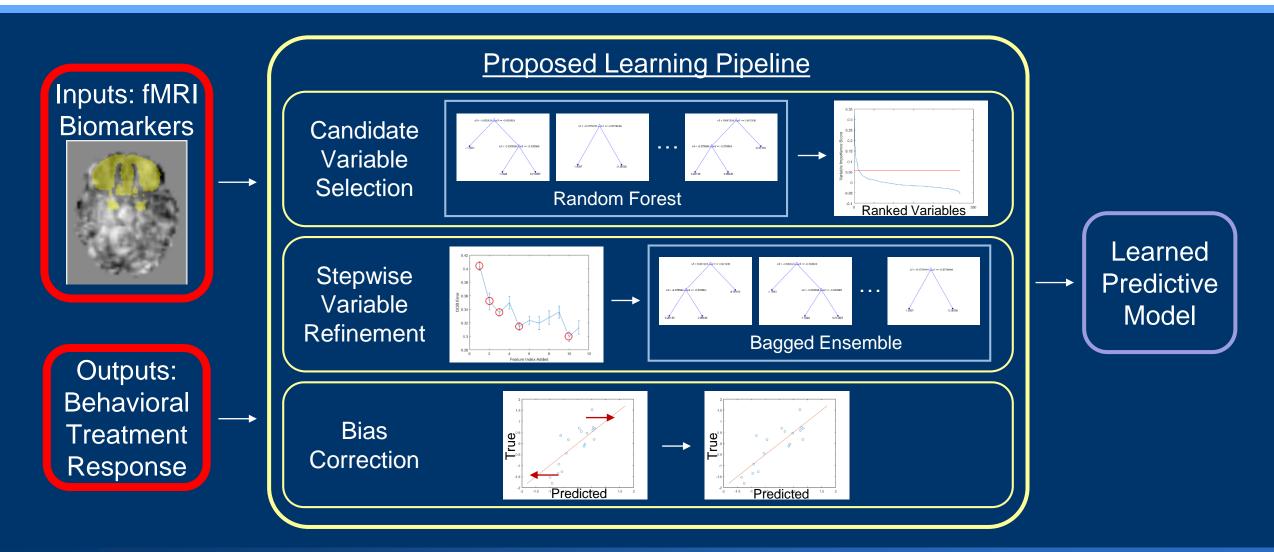
Goal: Predict Autism Treatment Outcome from Baseline fMRI

- Challenge: "large *p*, small *n*"
 - Large number of possible fMRI-derived inputs
 - Small number of subjects in autism studies
- Good candidate for Random Forests



- However...
 - Very noisy inputs degrade prediction accuracy
 - Small samples reduce strength of each tree





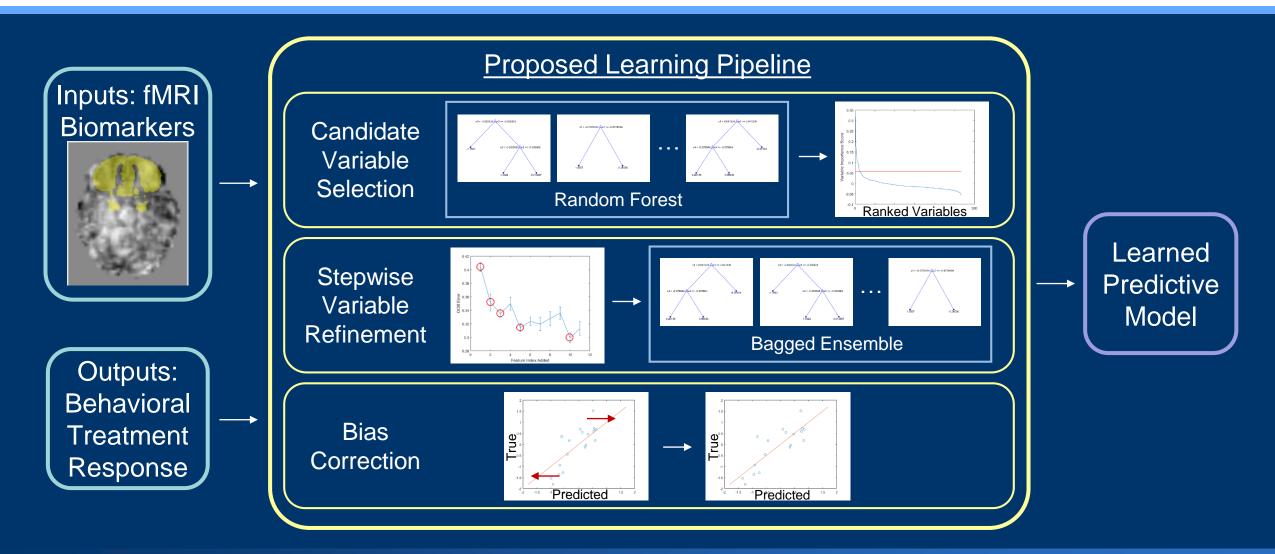
Inputs: Baseline fMRI-Derived Parameters

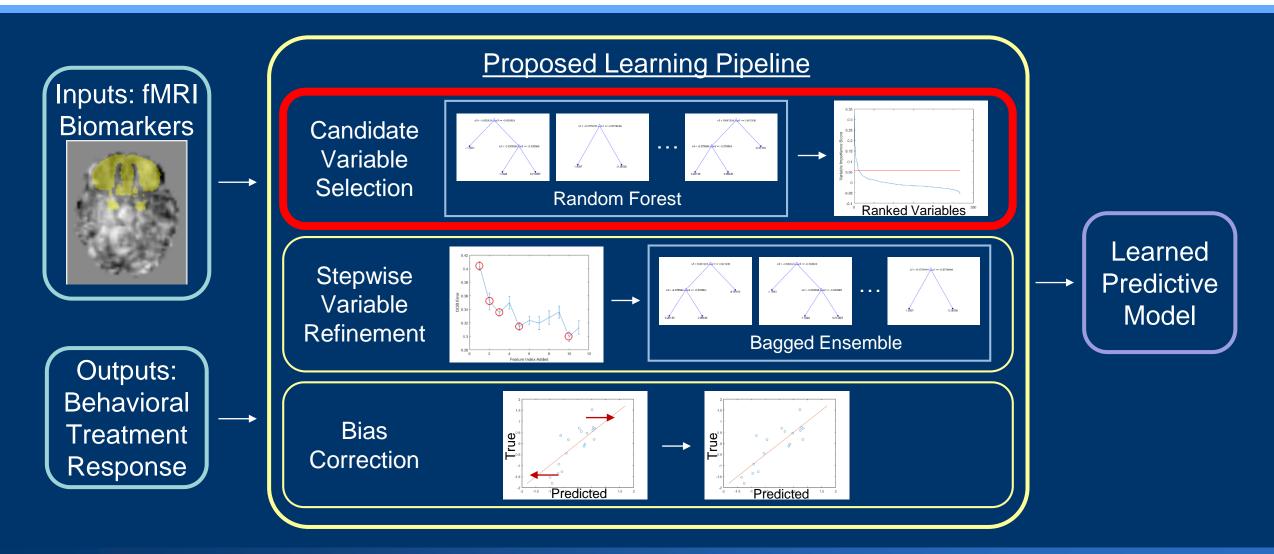
Biopoint: Biological motion perception paradigm

- Focus on brain regions associated with social motivation: Orbitofrontal cortex, ventromedial prefrontal cortex, amygdala, and ventral striatum
- \rightarrow Inputs: t-statistics for biological motion > scrambled motion contrast

Outputs: Behavioral Treatment Outcome

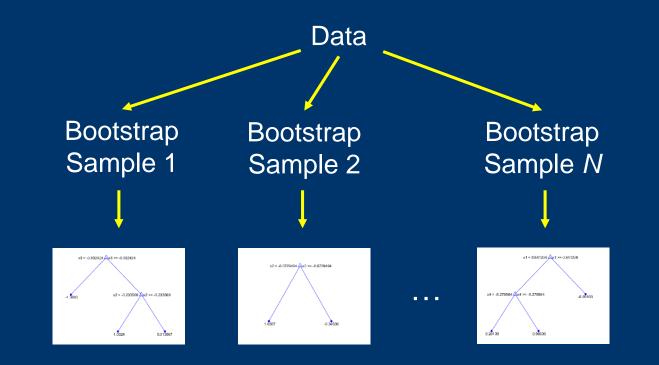
- Social Responsiveness Scale, Second Edition (SRS) Score
 - Measures severity of social impairment in ASD
 - Lower SRS score \rightarrow Better function
- Measure SRS score at baseline and post-treatment
- \rightarrow Outputs: Normalized change in SRS Score (Δ SRS)





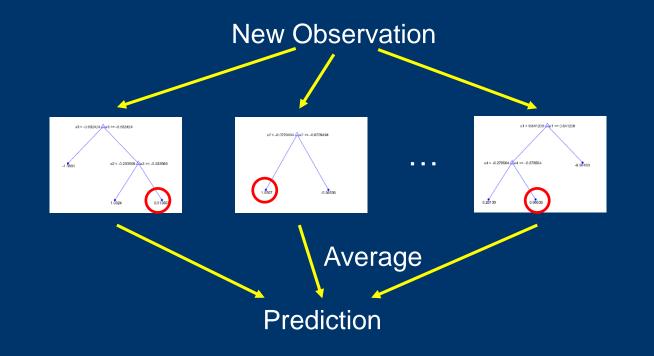
Random Forests for Regression Review

- Ensemble learning method that uses
 - Bagging



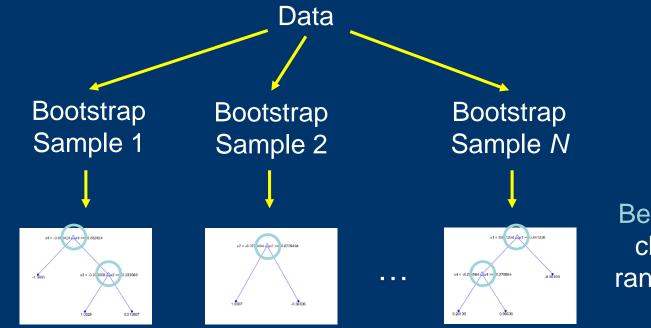
Random Forests for Regression Review

- Ensemble learning method that uses
 - Bagging



Random Forests for Regression Review

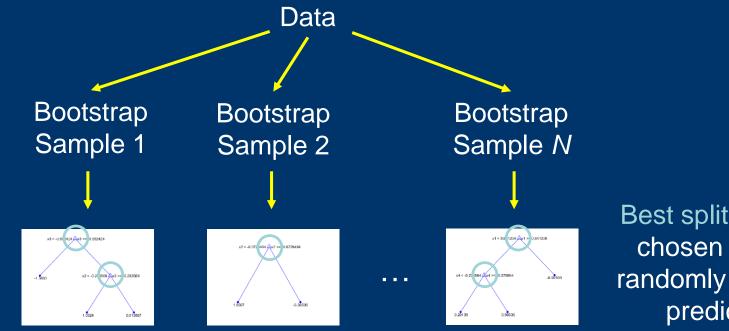
- Ensemble learning method that uses
 - Bagging
 - Random subset sampling of predictors



Best split variable chosen from *m* randomly selected predictors

Random Forests for Regression Advantages

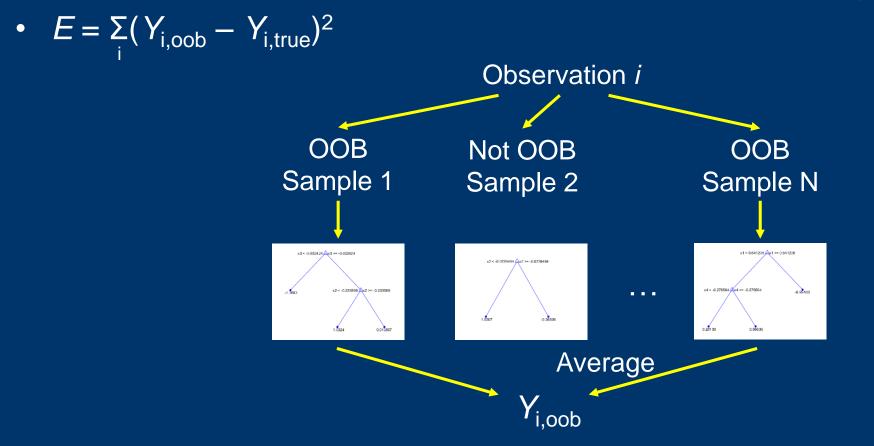
- Reduced correlation of trees \rightarrow Reduced variance of estimate ullet
- Efficient exploration of high dimensional inputs •



Best split variable chosen from *m* randomly selected predictors

Random Forests for Regression Out-of-bag (OOB) Error

• Internal estimate of test error rate estimated by out-of-bag (OOB) error

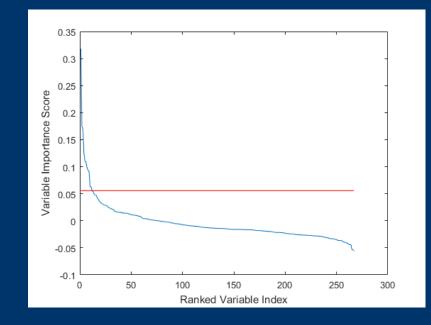


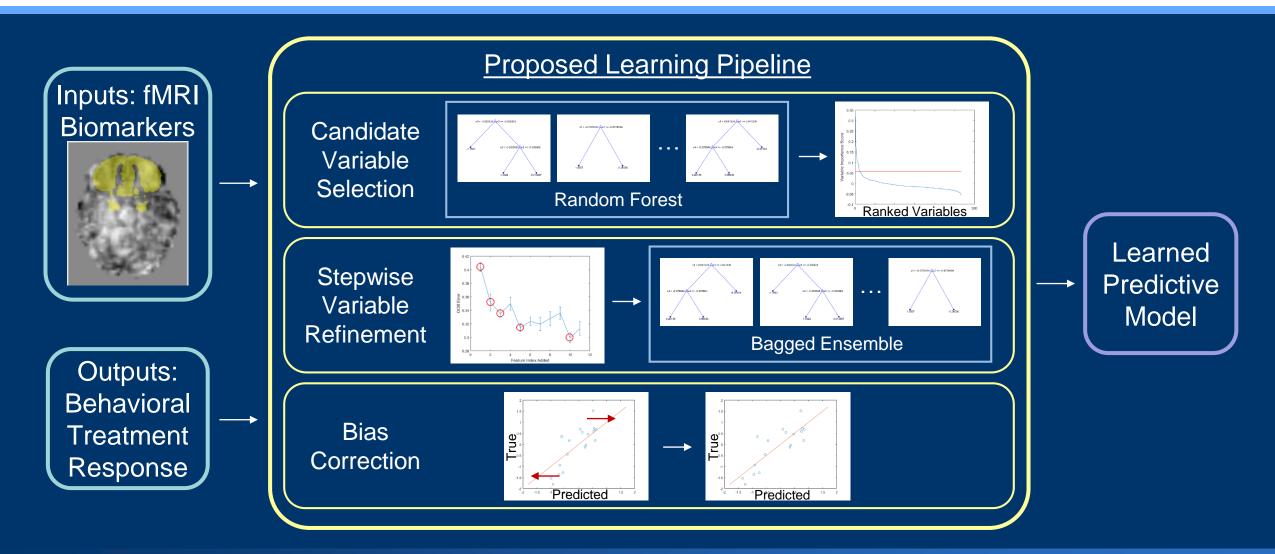
Random Forests for Regression Variable Importance

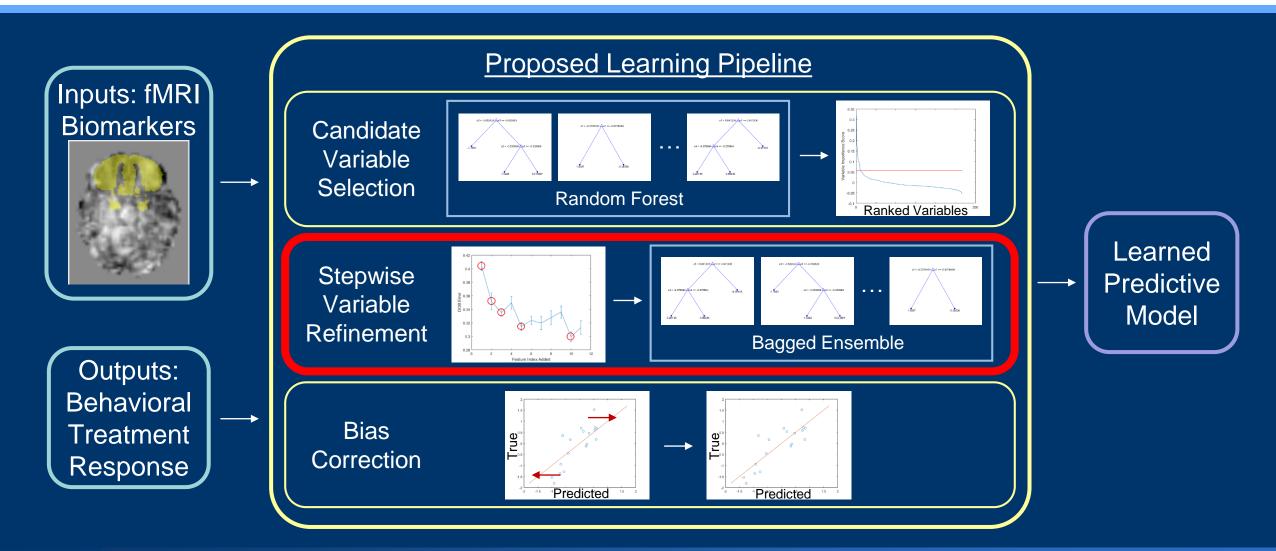
- For each tree and variable
 - Randomly permute values for the OOB samples
 - Calculate change in prediction error
- Importance score: Average change in error over all trees
- Bigger increase in error \rightarrow higher variable importance
- Note: small negative scores possible due to randomness

Candidate Variable Selection Using Variable Importance

- Run random forests to obtain variable importance scores
- Retain voxels with score > absolute value of lowest negative score
 - Intuition: Irrelevant variables have low scores that fluctuate around 0

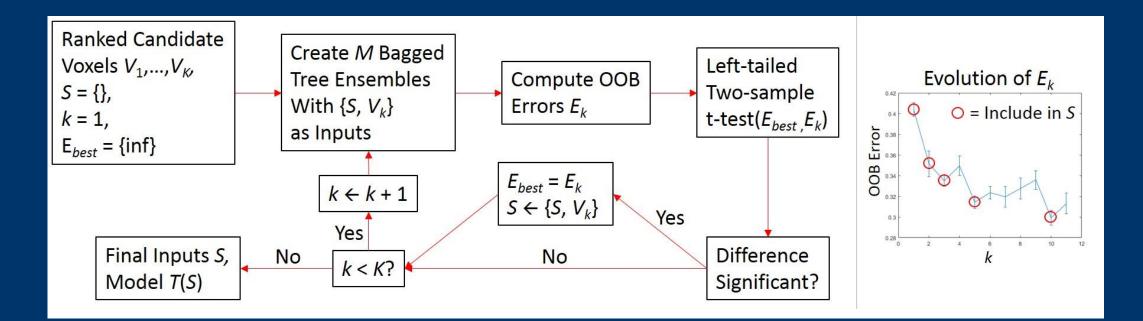


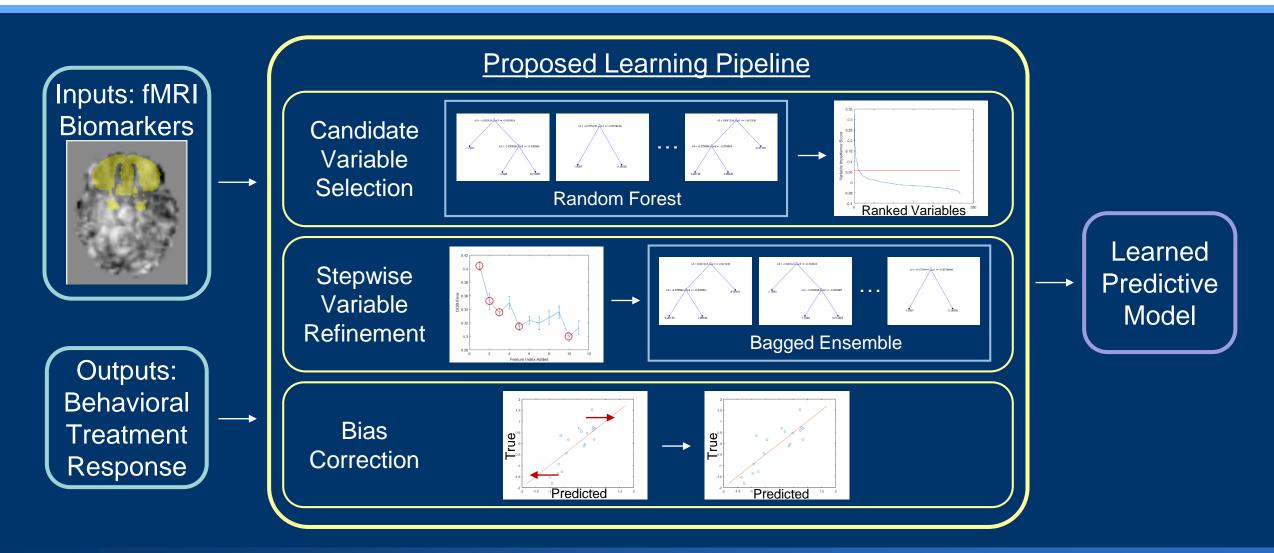


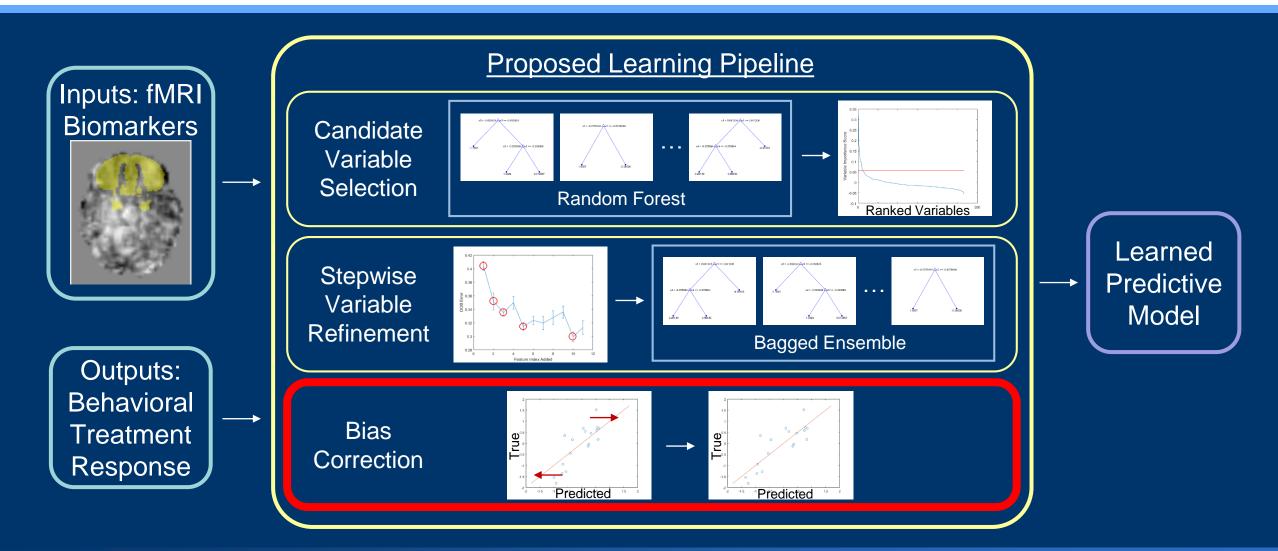


Stepwise Variable Refinement

- Iteratively refine candidate input variables for bagged tree ensemble
- $V_i = i$ th ranked candidate voxel, S = Set of best voxel inputs, E = OOB Error

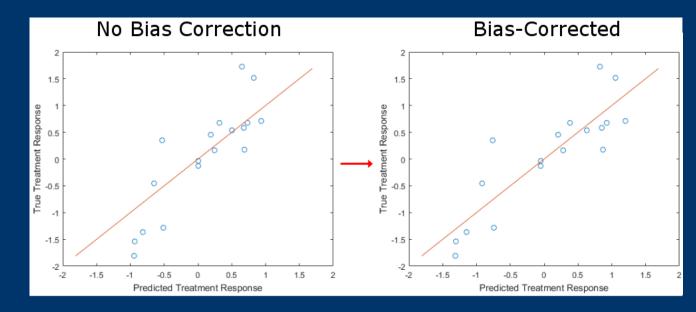


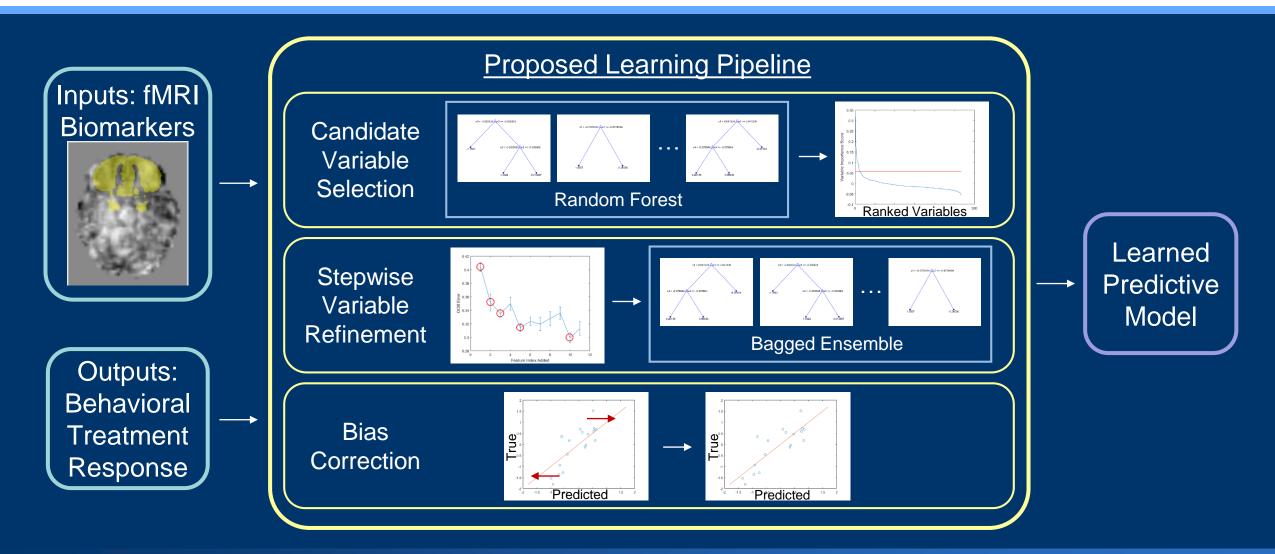




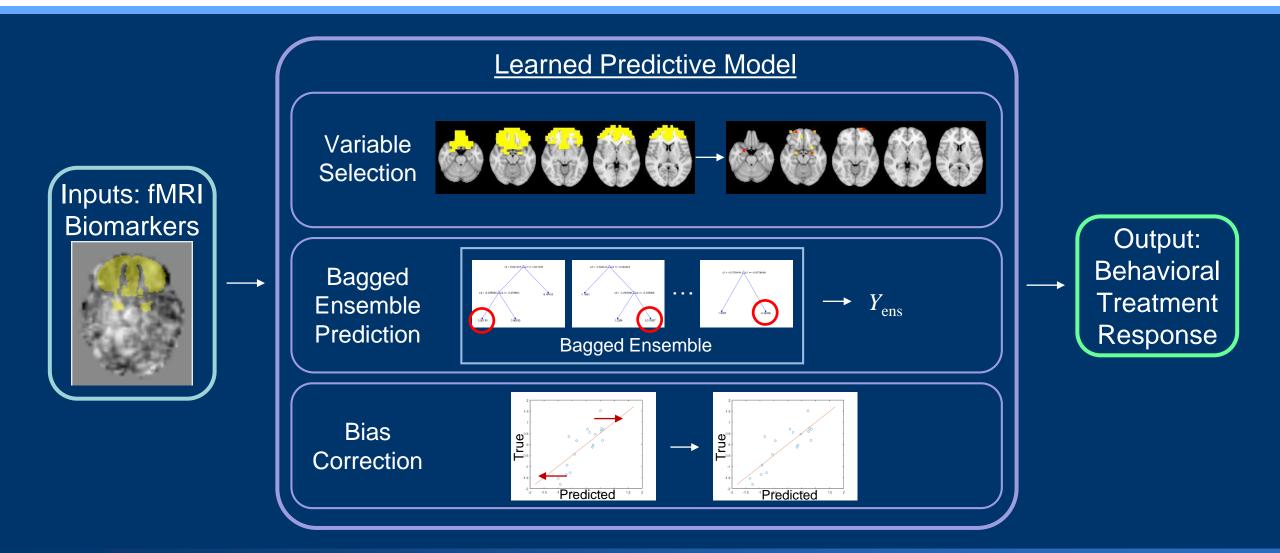
Bias Correction

- Regression tree ensembles underestimate high values and overestimate low values
- Linear model: $Y_{true} = \beta_1 Y_{ens} + \beta_0$
- Estimate parameters using OOB predictions



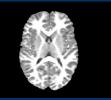


Predictions from New Data



Data

- 19 ASD children underwent 16 weeks Pivotal Response Therapy, 7 hrs/week
- Imaging at baseline:
 - T1-weighted MP-RAGE structural MRI



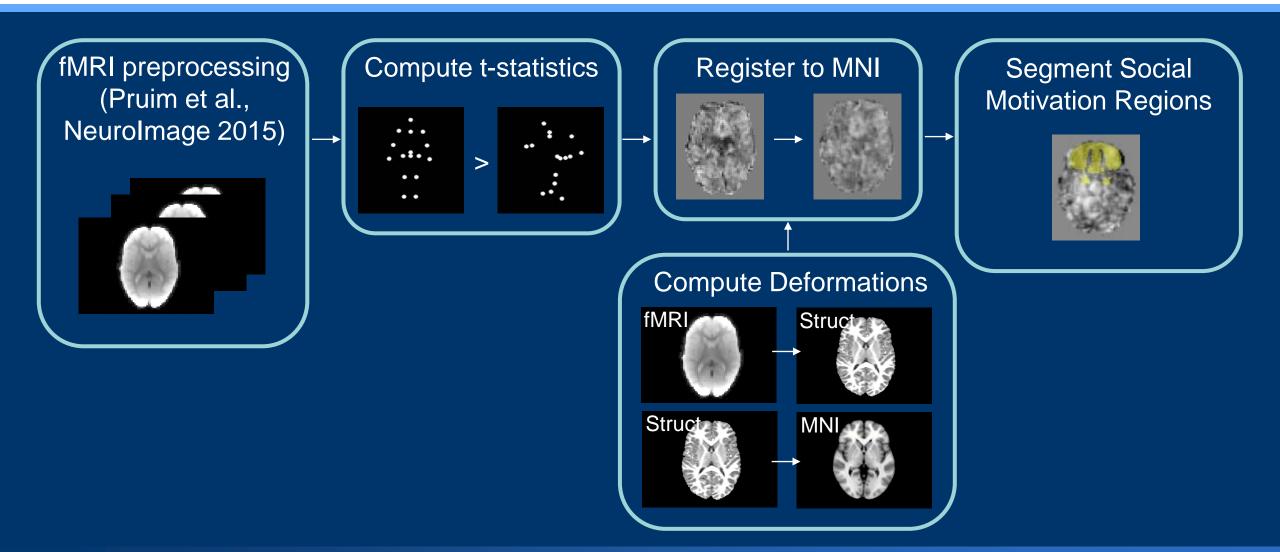
1 x 1 x 1 mm³

 BOLD T2*-weighted fMRI with Biopoint paradigm

164 volumes 3.44 x 3.44 x 4.00 mm³

• Note: Data collection involved > 2200 hours

Image Preprocessing



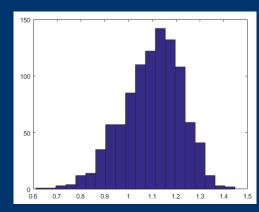
Methods Compared

- 1. Standard random forest
- 2. Standard support vector machine with linear kernel
- 3. Random forest variable selection \rightarrow random forest
- 4. Random forest variable selection \rightarrow bagging
- 5. Random forest variable selection \rightarrow stepwise variable refinement
- Random forest variable selection → stepwise variable refinement → bias correction (Proposed approach)
- MATLAB implementation with default parameters, except
 - 5000 trees for variable selection
 - 1000 trees for final models

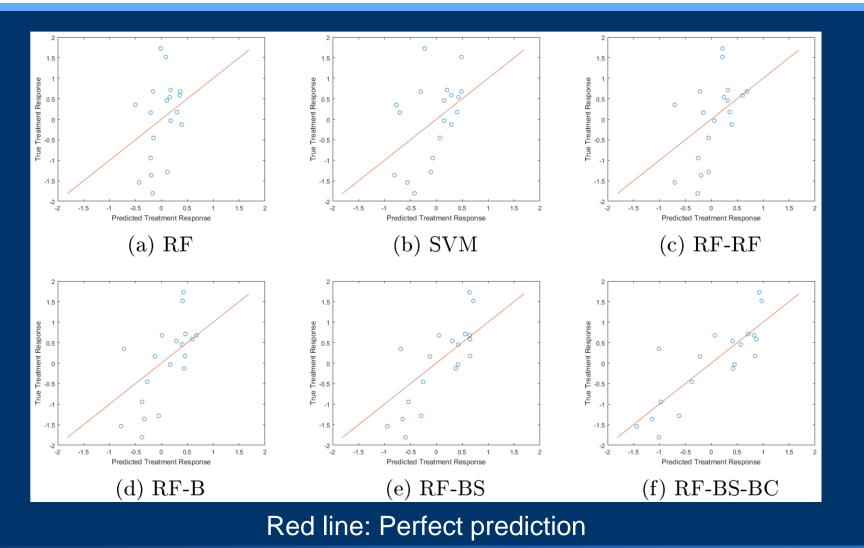
Evaluation Criteria

- Leave-one-out cross-validation
- Accuracy measures for
 - Outputs (ΔSRS)
 - Mean squared error
 - Pearson's correlation coefficient

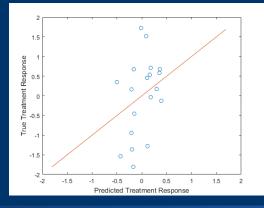
- Predicted outcomes (Post SRS)
 - Relative absolute error
 - Mean absolute percentage error
- Significance assessed using permutation tests
 - p = (# runs with values more extreme than observed statistic) / 1000



True vs. Predicted Response

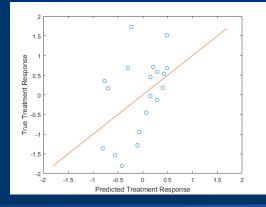


Algorithm	$MSE \pm SD$	p_{MSE}	r	p_r	RAE	p_{RAE}	$MAPE \pm SD$	p_{MAPE}
\mathbf{RF}	0.82 ± 0.96	0.019	0.39	0.038	0.63	0.044	0.24 ± 0.26	0.043
SVM	0.75 ± 0.93	0.037	0.46	0.040	0.60	0.051	0.22 ± 0.22	0.051
RF-RF	0.69 ± 0.80	0.024	0.54	0.023	0.56	0.026	0.21 ± 0.25	0.030
RF-B	0.57 ± 0.67	0.012	0.68	0.006	0.50	0.012	0.20 ± 0.23	0.025
RF-BS	0.40 ± 0.45	0.001	0.80	0.001	0.44	0.005	0.17 ± 0.19	0.013
RF-BS-BC	0.29 ± 0.43	0.001	0.83	0.001	0.35	0.001	0.13 ± 0.15	0.001



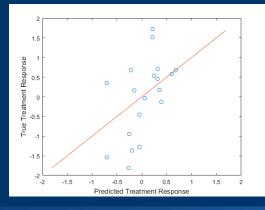
Random forest: Worst prediction accuracy

Algorithm	$MSE \pm SD$	p_{MSE}	r	p_r	RAE	p_{RAE}	$ MAPE \pm SD $	p_{MAPE}
RF	0.82 ± 0.96	0.019	0.39	0.038	0.63	0.044	0.24 ± 0.26	0.043
SVM	0.75 ± 0.93	0.037	0.46	0.040	0.60	0.051	0.22 ± 0.22	0.051
RF-RF	0.69 ± 0.80	0.024	0.54	0.023	0.56	0.026	0.21 ± 0.25	0.030
RF-B	0.57 ± 0.67	0.012	0.68	0.006	0.50	0.012	0.20 ± 0.23	0.025
RF-BS	0.40 ± 0.45	0.001	0.80	0.001	0.44	0.005	0.17 ± 0.19	0.013
RF-BS-BC	0.29 ± 0.43	0.001	0.83	0.001	0.35	0.001	0.13 ± 0.15	0.001



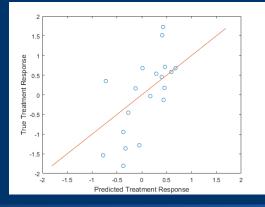
Support vector machine: Similar errors as random forest

Algorithm	$MSE \pm SD$	p_{MSE}	r	p_r	RAE	p_{RAE}	$MAPE \pm SD$	p_{MAPE}
RF	0.82 ± 0.96	0.019	0.39	0.038	0.63	0.044	0.24 ± 0.26	0.043
SVM	0.75 ± 0.93	0.037	0.46	0.040	0.60	0.051	0.22 ± 0.22	0.051
RF-RF	0.69 ± 0.80	0.024	0.54	0.023	0.56	0.026	0.21 ± 0.25	0.030
RF-B	0.57 ± 0.67	0.012	0.68	0.006	0.50	0.012	0.20 ± 0.23	0.025
RF-BS	0.40 ± 0.45	0.001	0.80	0.001	0.44	0.005	0.17 ± 0.19	0.013
RF-BS-BC	0.29 ± 0.43	0.001	0.83	0.001	0.35	0.001	0.13 ± 0.15	0.001



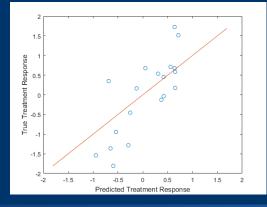
Select top variables \rightarrow random forest: Variable selection improves prediction

Algorithm	$MSE \pm SD$	p_{MSE}	r	p_r	RAE	p_{RAE}	$MAPE \pm SD$	p_{MAPE}
RF	0.82 ± 0.96	0.019	0.39	0.038	0.63	0.044	0.24 ± 0.26	0.043
SVM	0.75 ± 0.93	0.037	0.46	0.040	0.60	0.051	0.22 ± 0.22	0.051
RF-RF	0.69 ± 0.80	0.024	0.54	0.023	0.56	0.026	0.21 ± 0.25	0.030
RF-B	0.57 ± 0.67	0.012	0.68	0.006	0.50	0.012	0.20 ± 0.23	0.025
RF-BS	0.40 ± 0.45	0.001	0.80	0.001	0.44	0.005	0.17 ± 0.19	0.013
RF-BS-BC	0.29 ± 0.43	0.001	0.83	0.001	0.35	0.001	0.13 ± 0.15	0.001



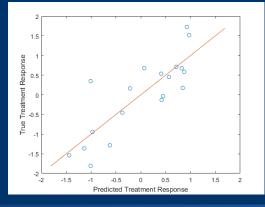
Select top variables \rightarrow bagging: Stronger trees reduce errors

Algorithm	$MSE \pm SD$	p_{MSE}	r	p_r	RAE	p_{RAE}	$MAPE \pm SD$	p_{MAPE}
RF	0.82 ± 0.96	0.019	0.39	0.038	0.63	0.044	0.24 ± 0.26	0.043
SVM	0.75 ± 0.93	0.037	0.46	0.040	0.60	0.051	0.22 ± 0.22	0.051
RF-RF	0.69 ± 0.80	0.024	0.54	0.023	0.56	0.026	0.21 ± 0.25	0.030
RF-B	0.57 ± 0.67	0.012	0.68	0.006	0.50	0.012	0.20 ± 0.23	0.025
RF-BS	0.40 ± 0.45	0.001	0.80	0.001	0.44	0.005	0.17 ± 0.19	0.013
RF-BS-BC	0.29 ± 0.43	0.001	0.83	0.001	0.35	0.001	0.13 ± 0.15	0.001



Stepwise variable refinement: Improved over bagging top variables

Algorithm	$\mathrm{MSE}\pm\mathrm{SD}$	p_{MSE}	r	p_r	RAE	p_{RAE}	$MAPE \pm SD$	p_{MAPE}
RF	0.82 ± 0.96	0.019	0.39	0.038	0.63	0.044	0.24 ± 0.26	0.043
SVM	0.75 ± 0.93	0.037	0.46	0.040	0.60	0.051	0.22 ± 0.22	0.051
RF-RF	0.69 ± 0.80	0.024	0.54	0.023	0.56	0.026	0.21 ± 0.25	0.030
RF-B	0.57 ± 0.67	0.012	0.68	0.006	0.50	0.012	0.20 ± 0.23	0.025
RF-BS	0.40 ± 0.45	0.001	0.80	0.001	0.44	0.005	0.17 ± 0.19	0.013
RF-BS-BC	0.29 ± 0.43	0.001	0.83	0.001	0.35	0.001	0.13 ± 0.15	0.001

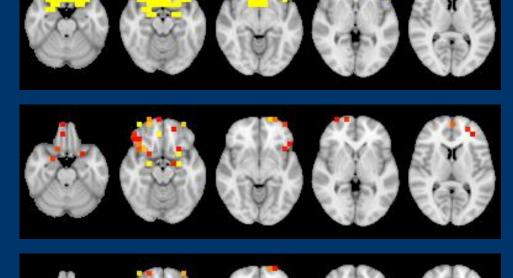


Proposed approach: Highest prediction accuracy

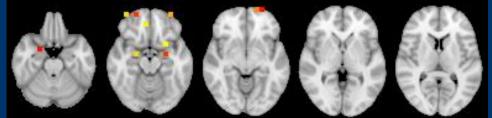
Variable Selection Results

Social motivation regions (original inputs): Orbitofrontal cortex, ventromedial prefrontal cortex, amygdala, ventral striatum

Random forest candidate variable selection



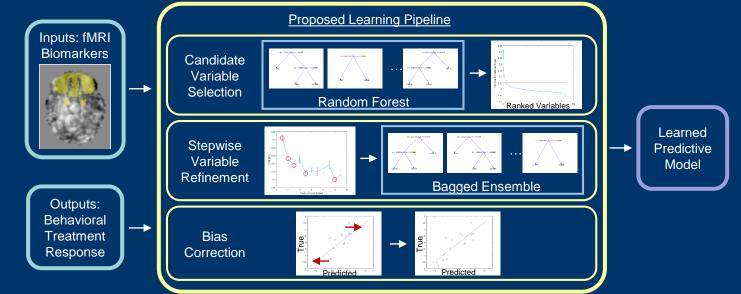
Stepwise variable refinement (final inputs)



Red \rightarrow Yellow: More frequently selected across trials

Conclusions

- Developed learning pipeline to predict response to autism behavior therapy from baseline fMRI
- Move toward personalized treatment



- Future work
 - Explore other biomarkers for prediction, e.g., functional connectivity
 - More data, assess generalization

Thank You!

- Dr. Pamela Ventola (Data collection)
- Dr. Daniel Yang (fMRI preprocessing)
- NIH grants T32 MH18268 and R01 NS035193
- Contact: nicha.dvornek@yale.edu