Pairwise Registration of Images with Missing Correspondences Due to Resection

Nicha Chitphakdithai and James S. Duncan Image Processing and Analysis Group, Yale University

ISBI 2010 April 16, 2010

Yale University

The Image Registration Problem

• Goal: Find the transformation *T* to register postresection and preoperative brain images

- Motivation: Evaluation of epilepsy patients
- Why not use traditional registration methods?
 - Missing correspondences in resection volume
 - Possibly highly nonlinear deformations near resection site

Approaches to Handle Missing Correspondences

• Previous Methods

- Hybrid similarity metric [Hartkens et al., MICCAI 2002; Papademetris et al., MICCAI 2004]
- Directly model vast changes
 - Biomechanical models for brain deformation in tumor growth [Zacharaki et al., Trans BME 2008]
 - "De-enhance" contrast image [Zheng et al., MICCAI 2007]
 - Model for partial data [Periaswamy and Farid, MedIA 2006]
- Our Key Observations
 - Given valid correspondences, could use standard registration algorithm
 - Given registered images, could label missing correspondence regions

MAP Registration Framework: Introducing the Indicator Map

- In maximum a posteriori framework, estimate $\hat{T} = \underset{T}{\operatorname{arg\,max}\log p(T | U, V)}$
- Consider "hidden" indicator map I on U I(x) = 0, no correspondence
 - I(x) = 0: no correspondencein V (resection voxel)
 - $I(\mathbf{x}) = 1$: valid tissue

correspondence in V

• Marginalized MAP framework:

$$\hat{T} = \arg\max_{T} \log\left[\sum_{I} p(T, I | U, V)\right]$$

Applying the EM Algorithm: The M-Step

• Update the estimate for *T* using transformation *T^k* from the previous iteration:

$$T^{k+1} = \arg \max_{T} E_{I|U,V,T^{k}} \left[\log p(U,V|T,I) + \log p(T|I) + \log p(I) \right]$$

• Assume a set *M* of possible indicator maps I_m :

$$T^{k+1} = \arg \max_{T} \sum_{I_m \in M} p(I_m | U, V, T^k) \cdot \left[\log p(U, V | T, I_m) + \log p(T | I_m) \right]$$

Applying the EM Algorithm: The E-Step

 Compute the probability of an indicator map given the images and current transformation estimate

$$p(I_{m} | U, V, T^{k}) = \frac{p(U, V | T^{k}, I_{m}) p(T^{k} | I_{m}) p(I_{m})}{\sum_{I_{m'}} p(U, V | T^{k}, I_{m'}) p(T^{k} | I_{m'}) p(I_{m'})}$$

• Final indicator map estimate:

$$\hat{I} = \underset{I_m}{\operatorname{arg\,max}} p\left(I_m \mid U, V, \hat{T}\right)$$

$$\begin{array}{c}
p(I_m | U, V, \widehat{T}) \\
\swarrow \\ \widehat{I} \\ I_m
\end{array}$$

Likelihood Models: Directly Comparing Intensities

- Assume voxels are independent
 - \rightarrow need models for $p(U(\mathbf{x}), V(T(\mathbf{x}))|T, I)$
- Probability distribution models
 - No correspondence: Uniform distribution
 - Valid correspondence: $U(\mathbf{x}) V(T(\mathbf{x})) \sim Normal(0,\sigma)$

$$p\left(U\left(\mathbf{x}\right), V\left(T\left(\mathbf{x}\right)\right) | T, I\right) = \begin{cases} \frac{1}{c} & , I\left(\mathbf{x}\right) = 0\\ \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{\left[U(\mathbf{x}) - V(T(\mathbf{x}))\right]^{2}}{2\sigma^{2}}\right) & , I\left(\mathbf{x}\right) = 1 \end{cases}$$

where c = number of intensity levels

Likelihood Models: Correlation Coefficient (CC)

- Probability distribution models
 - No correspondence: no correlation, uniform distribution
 - Valid correspondence: higher probability with higher CC

$$p(U(\mathbf{x}), V(T(\mathbf{x})) | T, I) = \begin{cases} k & , I(\mathbf{x}) = 0\\ \frac{1}{Z} \exp(\rho) & , I(\mathbf{x}) = 1 \end{cases}$$

where $k = \frac{1}{Z} \exp(0)$ Z = normalizing constant $\rho = \text{CC computed using only voxels}$ where $I(\mathbf{x}) = 1$

Transformation Prior Given the Indicator Map

- Free-form deformation transformation model using uniform cubic B-Splines
- Assumptions
 - Control points \mathbf{t}_i are independent
 - Control point components t are independent
- Brain tissue may deform more near resection \rightarrow Model $t | I_m \square N(\mu, \sigma^2(d_i))$

where $\mu = \text{starting location of } t$ on uniform grid $\sigma^2(d_i) \propto \frac{1}{d_i}$

 d_i = distance between μ_i and boundary of resection in I_m

Indicator Map Spatial Prior Model

- Training Set Assumptions
 - Segmented valid (S_{ν}) and missing
 - (*S_m*) correspondence areas
 - Resections in similar area
- Use PCA to create shape model
 - Embed S in level set Φ
 - Model possible segmentations as $\Phi = \overline{\Phi} + \sum_{i}^{q} w_{i} P_{i}$
 - Represent map I by weights w
 - \rightarrow Compute p(I) using $\mathbf{w} \sim N(\mathbf{0}, \Sigma_q)$
- Indicator map library: constrain w to range governed by the eigenvalues

Results on Synthetic Data: Experimental Setup

- Synthetic Dataset Creation
 - Preoperative image
 - Slice from normal brain
 - Postoperative image
 - "Resected" tissue on left side
 - Warped using physical model
- Registration Setup

- Likelihood model: direct intensity comparison
- Leave-one-out cross-validation
- Compared to standard non-rigid registration (NRR) method [Rueckert et al., TMI 1999]
 - Implemented in BioImage Suite [Papademetris et al., www.bioimagesuite.org]

Results on Synthetic Data: Sample Difference Images

Standard NRR

 High errors especially near resection

Our Method

- Flatter overall
- Most improved near resection

Results on Synthetic Data: Displacement Field Errors

- Calculated error statistics between true displacements and displacements produced by registration algorithms
- Performed paired one-tailed t-tests

	Min	Max	Mean	Std Dev
Standard NRR	0.0022	4.2555	0.5361	0.6578
Our Method	0.0012	3.0010	0.3034	0.3360
p-value	< 0.03	< 0.0007	< 4E-5	< 2E-6

→ Our method reduced all displacement error statistics compared to standard NRR

Results on Real Data: Experimental Setup

- 7 3D MR image pairs from epilepsy patients
- Likelihood model: correlated intensities
- Artificially enlarged training set
 - Shown to improve shape modeling capabilities [Koikkalainen et al., TMI 2008]
 - Only have small number of available images
 - Randomly warped true indicator using FFDs

- 30 images/training set

Results on Real Data: Registered Images

Average CC in valid region:

19%

↑51%

Results on Real Data: Estimated Indicator Map

• Indicator map for valid correspondences

- Average dice coefficients (n = 7)
 - Between estimated and true maps: 0.91
 - Between best reconstruction using PCA components and true map: 0.92
- → Estimated indicator map limited by library of possible maps built using PCA on training data

Conclusions and Future Work

- Presented registration method for preoperative and postresection images
 - Handled missing correspondence problem by including a "hidden" indicator map
 - Simultaneously estimated registration parameters and correspondence regions
 - PCA spatial prior guided indicator map selection
- Future work
 - More discrete labels or continuous indicator map
 - Incorporate other similarity metrics (eg., MI)
 - Difficulty of spatial prior training data → consider intensity-based prior

Thank you!

- Acknowledgements
 - Dennis Spencer (Neurosurgery)
 - Ken Vives (Neurosurgery)
 - Todd Constable (MRI Acquisition)
 - Xenios Papademetris (Database)
 - NIH 5R01EB000473-08
 - NSF Travel Grant
 - Yale GSA Conference Travel Fund