Non-rigid Registration of Longitudinal Brain Tumor Treatment MRI

Nicha Chitphakdithai, Veronica L. Chiang, and James S. Duncan Image Processing and Analysis Group, Yale University Department of Neurosurgery, Yale School of Medicine

EMBC 2011 Boston, MA September 2, 2011

Image Registration Goal

• Align longitudinal brain tumor treatment MRI

Time 1

Time 2

Time n

- Challenge: Missing Correspondences
 - Changes in tumors, edema, resection...

Some Approaches to Handle Missing Correspondences

- First extract points for matching¹
- Simulate tumor growth in normal brain²
- Adapted demons registration³
- Simultaneously estimate missing data⁴
 - No prior information
- Our recent work aligning brain resection MRI⁵
- \rightarrow NOW: extend to longitudinal brain tumors, with
 - Intensity information
 - Allowing larger deformations near lesion

¹Liu et al., ISBI 2010; ²Zacharaki et al., Neuroimage 2009; ³Risholm et al., IPMI 2009 ⁴Periaswamy and Farid, MedIA 2006; ⁵Chitphakdithai and Duncan, MICCAI 2010

Registration Framework: Setup

- Include "hidden" label map L to indicate matching vs. missing correspondences
- Maximum a posteriori framework:

$$\hat{R} = \arg\max_{R} \log\sum_{L} p(R, L \mid S, T)$$

Registration Framework: EM Algorithm

- E-Step: Label Map Weights $p(L(\mathbf{x}) = l | S, T, R^k) =$ *Likelihood Intensity Prior Label Map Prior* $p(T(R^k(\mathbf{x})) | S, R^k L(\mathbf{x}) = l) p(S(\mathbf{x}) | L(\mathbf{x}) = l) p(L(\mathbf{x}) = l)$ $\sum_{l'} p(T(R^k(\mathbf{x})) | S, R^k, L(\mathbf{x}) = l') p(S(\mathbf{x}) | L(\mathbf{x}) = l') p(L(\mathbf{x}) = l')$
- M-Step: Update registration $R^{k+1} = \frac{E-Step Weights}{Likelihood}$ arg max $\left[\sum_{\mathbf{x}\in S}\sum_{l\in L} p(L(\mathbf{x})=l \mid S,T,R^k) \log p(T(R(\mathbf{x})) \mid S,R,L(\mathbf{x})=l) + \sum_{\mathbf{x}\in S}\log p(R(\mathbf{x}) \mid L^{k+1})\right]$ Transformation Prior

Probability Models: Likelihood

Likelihood acts like similarity measure

$$p(T(R(\mathbf{x}))|S, R, L(\mathbf{x}) = l) \sim \begin{cases} N(S(\mathbf{x}), \sigma_t) & ,l = \text{valid tissue} \\ N(S(\mathbf{x}), \sigma_b) & ,l = \text{background} \\ Unif(\frac{1}{C}) & ,l = \text{abnormal class} \end{cases}$$

Automatically update σ_t and C: \bullet

$$Normal(S(x), \sigma_t^{k+1})$$

$$\sqrt{\frac{\sum_{x \in S} p(L(\mathbf{x}) = l \mid S, T, R^k) (T(R^k(\mathbf{x})) - S(\mathbf{x}))^2}{\sum_{x \in S} p(L(\mathbf{x}) = l \mid S, T, R^k)}}$$

 σ_{t}^{k+1}

Probability Models: Intensity Prior

Assume MRI signal characterized by tissue type
→ Different distribution for intensities given label

$$p(S(\mathbf{x}) | L(\mathbf{x}) = l) \sim \begin{cases} Unif(\frac{1}{K}) &, l = \text{valid tissue} \\ N(0, \sigma_b) &, l = \text{background} \\ N(\mu_a, \sigma_a) &, l = \text{abnormal class} \end{cases}$$

Training set

Abnormal class parameters

Probability Models: Transformation Prior

- Transformation Model: FFDs based on uniform cubic B-splines
- Want to tolerate greater deformation near "abnormal regions" in current map estimate L^k
- Model $R(\mathbf{x}) | L^k \sim N(\mu_{\mathbf{x}}, \sigma_{\mathbf{x}})$
 - $\mu_{\mathbf{x}}$ = Position of voxel \mathbf{x}
 - Increased $d \rightarrow \text{Decreased } \sigma_{\mathbf{x}}$

$$\sigma_{\mathbf{x}}^{2} = \begin{cases} \sigma_{\min}^{2} + \frac{d_{tol} - d}{d_{tol}} \left(\sigma_{\max}^{2} - \sigma_{\min}^{2} \right) & , d \leq d_{tol} \\ \sigma_{\min}^{2} & , d > d_{tol} \end{cases}$$

Abnormal Class

- Variances updated every M-step

Probability Models: Label Map Prior

- Impose Markov random field onto label map
- Use mean-field approximation and Potts smoothing model:

$$p(L(\mathbf{x}) = l) \approx \frac{1}{Z'_{\mathbf{x}}(\beta)} \exp \left[\beta \sum_{\mathbf{n} \in N(\mathbf{x})} \delta(l, L^{k}(\mathbf{n}))\right]$$
$$L^{k}(\mathbf{n}) = \arg \max p(L(\mathbf{x}) = l \mid S, T, R^{k-1})$$

• Update β^{k+1} every M-step

 $\arg \max_{\beta} \sum_{\mathbf{x} \in S} \sum_{l \in L} p(L(\mathbf{x}) = l \mid S, T, R^{k}) \Big[\log p(L(\mathbf{x}) = l \mid \beta) + \log p(\beta) \Big]$ $Normal with small \mu, \sigma$

Synthetic Examples: Data and Experiments

• 3 Sample Series:

Active Tumor Shrinks

Edema + Tumor Resected

Active Tumor Grows

• Compared our method (*RALE*) to "standard" non-rigid registration¹ (SNRR) * Both use: • Voxel intensity-based similarity FFD transformation model

¹Rueckert et al., TMI 1999

Synthetic Examples: Sample Results

Tumor Shrinks Tumor Resected Tumor

Grows

Time 1

Time 2

SNRR

RALE

Synthetic Examples: Registration Errors

Average Displacement Field Errors

RALE significantly reduced each error measure (p < 0.05)

Patient Examples: Data Preparation

- Patient 1 (4 images): Right frontal lesion, Gamma knife treatment, resection
- Patient 2 (4 images): Right parietal lesion, pretreatment studies, resection, post-op
- Pre-processing

Patient Examples: Sample Results

Patient 1

Patient 2

Time 1

SNRR

RALE

Patient Examples: Registration Errors

Measured 7 Landmarks Highly Affected by Lesion in Each Patient

Patient 1

Patient 2

Overall	SNRR	3.91 mm
Average Errors	RALE	2.79 mm

* RALE significantly increased accuracy (p<2e-6)

Conclusions and Future Work

Difficulty distinguishing abnormal regions
→ May include prior spatial information

Thank You!

- Special thanks to...
 - Todd Constable (MRI Acquisition)
 - Xenios Papademetris and Ronen Globinsky (Database)
 - NIH R01 EB000473-09
- Contact: nicha.chitphakdithai@yale.edu

INTEGRATING TECHNOLOGY AND MEDICINE FOR A HEALTHIER TOMORROW AT BOSTON MARRIOTT COPLEY PLACE AUGUST 30TH - SEPT 3RD, 2011