Learning from fMRI using Recurrent Neural Networks with Applications in Autism

Nicha C. Dvornek Associate Research Scientist, Radiology & Biomedical Imaging MRRC fMRI Seminar Series May 3, 2018

Questions to answer

- Why supervised machine learning for fMRI analysis?
- What is / why use deep learning with recurrent neural networks?
- How can we apply recurrent neural networks to fMRI analysis?

Outline

- 1. Supervised machine learning for fMRI
- 2. Deep learning and recurrent neural networks
- 3. Classification of autism / control from
 - Resting-state fMRI (rsfMRI)
 - rsfMRI + phenotypic data
- 4. Prediction of autism treatment outcome
- 5. Final thoughts

Traditional fMRI analysis finds *descriptive* model

- Use all the data to fit a model
- General linear model for task fMRI (tfMRI)

Traditional fMRI analysis finds *descriptive* model

- Functional connectivity analysis for resting-state fMRI (rsfMRI)
- Use all the data to fit a model

Seed-based correlations

Independent component analysis

analysis

Supervised machine learning finds *predictive* model

• Training phase:

Supervised machine learning finds *predictive* model

• Testing phase:

Application 1: Identify fMRI biomarkers for autism spectrum disorder (ASD)

1. Train classifier for ASD 2. Extract biomarkers from learned model

Application 2: Predict treatment outcome from baseline fMRI

Outline

- 1. Supervised machine learning for fMRI
- 2. Deep learning and recurrent neural networks
- 3. Classification of autism / control from
 - Resting-state fMRI (rsfMRI)
 - rsfMRI + phenotypic data
- 4. Prediction of autism treatment outcome
- 5. Final thoughts

Deep learning uses artificial neural network model with many layers

Why has deep learning become so successful/popular?

- Big computational resources
- Big datasets
- Big models

Why has deep learning become so successful/popular?

• Big computational resources

Cat

- Big datasets
- Big models
- It works!

Classification

Detection

Captioning

A cat is yawning

Recurrent neural networks were designed for temporal data

- Deep learning model with recurrent connections
 - "Memory" is passed forward

Recurrent neural networks were designed for temporal data

- Deep learning model with recurrent connections
 - "Memory" is passed forward
 - Model parameters *W* shared across time

Recurrent neural networks with long short-term memory (LSTM) can learn long-term dependencies

- 2 types of recurrent information
 - 1. Hidden state h_t (output)
 - 2. Cell state c_t (remembers long-term information)

Recurrent neural networks with long short-term memory (LSTM) can learn long-term dependencies

• 4 neural network layers take x_t , h_{t-1} as inputs

LSTM Equations

$$\begin{array}{ll} \text{input gate} & i_t = \sigma \left(W_i x_t + U_i h_{t-1} + b_i \right) \\ \text{forget gate} & f_t = \sigma \left(W_f x_t + U_f h_{t-1} + b_f \right) \\ \text{current cell state} & \tilde{c_t} = \tanh \left(W_c x_t + U_c h_{t-1} + b_c \right) \\ & \text{cell state} & c_t = i_t * \tilde{c_t} + f_t * c_{t-1} \\ & \text{output gate} & o_t = \sigma \left(W_o x_t + U_o h_{t-1} + b_o \right) \\ & \text{hidden state} & h_t = o_t * \tanh \left(c_t \right) \end{array}$$

Outline

- 1. Supervised machine learning for fMRI
- 2. Deep learning and recurrent neural networks
- 3. Classification of autism / control from
 - Resting-state fMRI (rsfMRI)
 - rsfMRI + phenotypic data
- 4. Prediction of autism treatment outcome
- 5. Final thoughts

Application 1: Identify fMRI biomarkers for autism spectrum disorder (ASD)

1. Train classifier for ASD 2. Extract biomarkers from learned model

Heterogeneity of ASD makes classification challenging

- Studies using small (*N*<100), homogeneous datasets:
 - + High accuracy (>70%) within sample
 - Poor generalization
- Studies using large, heterogeneous datasets:
 - + Better representation of population
 - Low accuracy (~60%), likely due to heterogeneity

Standard approaches classify ASD/TDC using pairwise rsfMRI connectivity as inputs

*Biomarkers: Pairwise connections

Proposed approach classifies ASD/TDC using rsfMRI time-series as inputs

*Biomarkers: Brain regions/networks defined by LSTM nodes

Yale school of medicine

LSTM-based network architecture to classify ASD/TC from rsfMRI time-series

Autism Brain Imaging Data Exchange (ABIDE) Dataset I

- 539 ASD + 573 TDC from 17 international sites
- Neuroimaging (rsfMRI, structural MRI) and phenotypic data
- Preprocessed Connectomes Project
 - − Connectome Computation System pipeline
 → 1100 preprocessed subjects in MNI space
 - Parcellation from Craddock 200 atlas
- ROI mean time-series preprocessing
 - Normalized to percent signal change
 - Resample to 2 second interval

Augment data using random crops of the rsfMRI timeseries

• 10 random crops / subject $\rightarrow N = 11000$ samples

Evaluate algorithm performance using cross-validation

• 10-fold cross-validation, stratified across sites

- Accuracy measures
 - Subject accuracy (subject score = average of subject's 10 sample scores)
 - $-\Delta$ Baseline = (Subject accuracy) (Accuracy by naïve labelling)

LSTM model outperformed previous studies classifying majority of ABIDE cohort from rsfMRI

Classification Method	Validation Method	# of Subjects	Subject Accuracy (%)	∆Baseline (%)
Logistic Regression ¹	10CV	178	69.7	19.7
Linear SVM ²	Train/Val	252	66	16
Linear SVM ³	10CV	871	66.9 (2.7)	13.2
GLM ⁴	LOOCV	964	60.0	6.4
RBF SVM ⁵	Train/Val	1111	59.2	7.6
LSTM – no augmentation ⁶	10CV	1100	61.4 (4.5)	9.5
LSTM – with augmentation ⁶	10CV	1100	68.5 (5.5)	16.6

¹Plitt et al., Neuroimage: Clin. 2015. ²Chen et al., Neuroimage: Clin. 2015. ³Abraham et al., Neuroimage 2017. ⁴Nielsen et al., Front. Hum. Neurosci. 2013. ⁵Ghiassian et al., PLOS One 2016. ⁶Dvornek et al., MLMI 2017.

Interpret large LSTM model weights as important features for classification

:

 $W_l(n,r)$ = Weight for ROI *r* in LSTM node *n* for layer *l*

LS LM node n	W	Veights <i>W_l(n,r)</i> Atlas region <i>r</i>	Average
analysis	corr.		47.80
posterior superior	0.481	Nourogynth	2. 1. 2-
temporal sulcus	0.472	Neurosynth	+ + +
superior temporal	0.402		
psts	0.396		S 357 S
temporal	0.388		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
sts	0.386	Mack	of large average W/
	•	WIASK	UI IAI ge avelage W

Important ROIs for each LSTM layer map to areas previously implicated in ASD

Input Layer

Forget Layer

Anatomical:

Superior Temporal Sulcus, Middle Temporal Gyrus, Planum Temporale

Inferior Frontal Gyrus, Temporal Pole, Planum Temporale

Functional: Sentence, Comprehension, Linguistic, Audiovisual, Language Sentence, Verb, Nouns, Semantically, Sentence Comprehension

Important ROIs for each LSTM layer map to areas previously implicated in ASD

Cell Layer

Output Layer

Anatomical:

Midbrain, Thalamus, Superior Temporal Sulcus Hypothalamus, Inferior Parietal Lobe, Medial Prefrontal Cortex

Functional: Reward, Speaker, Voice, Audiovisual, Speech Self, Sexual, Referential, Memory Retrieval, Regulation

Interpret large LSTM model weights as important features for classification

• $W_l(n,r)$ = Weight for ROI r in LSTM node n for layer l

Mask of

analysis	corr.
fusiform	0.205
fusiform gyrus	0.179
occipitotemporal	0.171
lateral occipital	0.17
faces	0.167
objects	0.167
	analysis fusiform fusiform gyrus occipitotemporal lateral occipital faces objects

Each LSTM node encodes potential brain network important for ASD/TDC classification

Pain, reward, anticipation, incentive

Faces, objects, word form, emotional, visual

Default mode, reward, listening, mental states

Listening, sounds, theory of mind, social

Outline

- 1. Supervised machine learning for fMRI
- 2. Deep learning and recurrent neural networks
- 3. Classification of autism / control from
 - Resting-state fMRI (rsfMRI)
 - rsfMRI + phenotypic data
- 4. Prediction of autism treatment outcome
- 5. Final thoughts

How to incorporate phenotypic information?

*Biomarkers: Brain networks defined by LSTM nodes

Yale school of medicine

Recall: Baseline LSTM architecture

Input phenotypic data with rsfMRI directly into LSTM (Pheno-TS)

Combine phenotypic data with LSTM encoded outputs (Pheno-LSTM)

Combine phenotypic data with score from rsfMRI (Pheno-rsfScore)

Use phenotypes as auxiliary targets (Pheno-Target)

Combining phenotypic data with rsfMRI score improves classification accuracy

Classification Method	Phenotypic Data	# of Subjects	Subject Accuracy (%)	ΔBaseline (%)
Graph CNN ¹	Sex, Site	871	69.5	15.8
GLM ²	Age, Sex, Hand	964	60.0	6.4
RBF SVM ³	Age, Sex, Hand, Full IQ, PIQ, VIQ, Site, Eye	1111	65.0	13.4
Pheno-TS ⁴	Age, Sex, Hand, Full IQ, Eye	1100	67.0 (3.5)	15.1
Pheno-LSTM ⁴			68.2 (4.1)	16.3
Pheno-rsfScore ⁴			70.1 (3.2)	18.2
Pheno-Target ⁴			67.2 (4.0)	15.3

¹Parisot et al., MICCAI 2017. ²Nielsen et al., Front. Hum. Neurosci. 2013. ³Ghiassian et al., PLOS One 2016. ⁴Dvornek et al., ISBI 2018.

Yale school of medicine

For best model, rsfMRI is most influential and full IQ is most important phenotypic variable

Outline

- 1. Supervised machine learning for fMRI
- 2. Deep learning and recurrent neural networks
- 3. Classification of autism / control from
 - Resting-state fMRI (rsfMRI)
 - rsfMRI + phenotypic data
- 4. Prediction of autism treatment outcome
- 5. Final thoughts

Application 2: Predict treatment outcome from baseline fMRI

Intensive behavioral therapies may be a promising treatment for ASD

- E.g., Pivotal Response Therapy (PRT)
 - Targets social skills development in play-based format
- Large commitment from patients and families
- Early intervention is crucial

Need for precision medicine to assign correct treatment as early as possible

- Recall: ASD extremely heterogeneous
- No "one size fits all" treatment
- Currently trial and error

How to learn a robust LSTM model for predicting treatment outcome from small patient dataset?

- 1. Use task fMRI specific to activating social regions
- 2. Choose appropriate outcome measure
- 3. More data augmentation
- 4. Reduce model complexity
- 5. Utilize simple phenotypic data to create subject-specific models

Use task fMRI with Biopoint biological motion perception paradigm

• Revealed differences between ASD/TC in social brain regions¹

Measure treatment response using % change in Social Responsiveness Scale (SRS) from baseline

- SRS measures severity of social impairment in autism
- Lower SRS score \rightarrow Better social function

eline
)

Bootstrap sample ROI voxels to augment small treatment dataset

• For each ROI, randomly sample voxels with replacement

Modify LSTM-based model to predict treatment outcome, conditioned on phenotypic variables

PRT Dataset

- 21 ASD children (6.05 \pm 1.24 years) underwent 16 weeks PRT
- Collected before treatment:

MP-RAGE

tfMRI with Biopoint

Phenotypic Variables

- Collected after treatment: SRS
- Note: > 2400 hours to collect data

Data Preprocessing

- Standard fMRI preprocessing pipeline¹
- Registered fMRI to MNI space
- Parcellation using AAL atlas (90 cerebral ROIs)

- Standardized time-series (subtract mean, divide by standard dev.)
- Phenotypic variables normalized to [-1,1]

Bootstrap data augmentation and subject-specific LSTM initialization significantly improve prediction

Outline

- 1. Supervised machine learning for fMRI
- 2. Deep learning and recurrent neural networks
- 3. Classification of autism / control from
 - Resting-state fMRI (rsfMRI)
 - rsfMRI + phenotypic data
- 4. Prediction of autism treatment outcome
- 5. Final thoughts

Deep learning with LSTMs can successfully learn predictive models from fMRI

• Higher classification accuracy (68.5%) of ABIDE cohort

Yale school of medicine

Deep learning with LSTMs can successfully learn predictive models from fMRI + phenotypic data

• Highest classification accuracy (70.1%) on largest subset of ABIDE

Deep learning with LSTMs can successfully learn predictive models from fMRI + phenotypic data

• High correlation (r = 0.77) between true/predicted response to PRT

Deep networks with LSTMs are interpretable

- LSTM model weights may define biomarkers
- Extracted regions previously implicated in ASD

• Depending on model, importance of phenotype can be understood

Future directions: New methodology

- Incorporate other types of imaging data into single neural network
 Structural MRI, Diffusion MRI, ...
- Rigorous method for network interpretation/biomarker extraction
- Normalize fMRI data across different sites (domain adaptation)

Future directions: New applications

- Other applications in ASD
 - Predict behavioral measures (e.g., SRS, ADOS) and assess biomarkers
 - Predict outcomes for other therapies
- Other neurological diseases/disorders
- Other large neuroimaging datasets, e.g., HCP
- Other neuroimaging modalities
 - EEG
 - MEG
 - PET

In summary....

- Why supervised machine learning for fMRI analysis?
 - Finds *predictive* models that generalize to new data by learning individualized patterns
- What is / why use deep learning with recurrent neural networks?
 - Nice model for temporal data that showed improved accuracy
- How can we apply recurrent neural networks to fMRI analysis?
 - Disease/control classification, biomarker identification, treatment prediction, ...

Thank you!

- NIH Grants T32 MH18268 and R01 NS035193
- Duncan Lab
 - Xiaoxiao Li
 - Juntang Zhuang
 - Allen Lu

- Child Study Center (past and present)
 - Pamela Ventola
 - Kevin Pelphrey
 - Daniel Yang

• Contact: nicha.dvornek@yale.edu

