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 Abstract–Respiratory motion has to be corrected in PET/CT 
imaging for precise tumor detection and quantification. The 
optimal motion correction methods for regular breathers and 
irregular breathers could be different. In this study, we 
developed deep learning based methods to automatically classify 
patient breathing patterns and investigated the impact of 
breathing pattern variability on gating performance. We 
implemented a hybrid neural network consisting of convolutional 
(Conv) layers, recurrent layers (LSTM, long short-term memory) 
and a linear classifier to differentiate breathing patterns. 1295 
respiratory traces collected using RPM (Real-time Position 
Management) system were used for training and testing, as well 
as additional traces acquired using the Anzai system. We 
optimized the deep neural network with respect to data 
preprocessing, augmentation, weighted loss function and 
generalization capability. The results showed that the proposed 
deep learning model has reached a high prediction accuracy, with 
a sensitivity of 92.0% and a specificity of 91.8%. Using phase 
gating approach, for regular breathers, end-expiration phase 
gating can effectively correct the respiratory motion. In contrast, 
for irregular breathers, larger amount of intra-gate motion was 
present in the gated PET/CT images and more sophisticated 
motion correction methods are required.  

I. INTRODUCTION 

Respiratory motion is one of the major causes of 
degradation of PET image quality. Image blurring and artifacts 
due to breathing are unavoidable, as the usual duration of PET 
acquisition is much longer than a respiratory cycle. 
Respiratory motion averages 7.5 mm in mean amplitude for 
long tumors, and 18.6 mm for abdominal tumors (liver, 
kidney, pancreas) [1]. These motions might have a substantial 
impact on tumor detection and quantification. Previous 
researches have demonstrated that, the blurred images lead to 
10-75% underestimation of maximum standard uptake value, 
and up to 2-fold overestimation of tumor volume [2]. 
Moreover, in PET/CT that employs CT for attenuation 
correction, the mismatch between breath-hold CT, a snapshot 
of one respiratory location within one breathing cycle, and 
PET, a multi-minute average over many breathing cycles, can 
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cause significant mis-localization, artifacts and quantitative 
errors through CT-based attenuation correction [1]. Therefore, 
respiratory motion has to be corrected.  

Different breathing patterns might require different motion 
correction methods. A previous study [2] has defined regular 
breathers, whose respiratory traces have consistent amplitudes 
and spend more time during the end-expiration phase that is 
relatively motion free, and irregular breathers, whose traces 
suffer from significant amplitude variation and baseline 
change. The histogram of irregular traces does not have an 
end-expiration peak and typically spread arbitrarily over 
various displacements. Representative breathing patterns are 
demonstrated in Fig. 1. Skewness can serve as an intuitive 
metric to quantify the asymmetric of histogram shapes, but 
lacks sensitivity and specificity.  

 
Figure 1. Breathing pattern variability [2].  

 
Patients’ breathing patterns often change over time, which 

brings even more complications. Changes often occur within a 
PET imaging session, or breathing patterns can be 
substantially different during PET and CT acquisitions. For 
approximately every 10 minutes, breathing patterns of patients 
are likely to change [3], which causes additional attenuation 
correction mismatch and tumor quantitative errors. The 
variability of respiratory patterns thus requires precise 
differentiation of regular from irregular breathers, and 
detection and tracking of changes in these patterns. 
Additionally, the impact of breathing patterns changes on 
existing motion correction methods have to be investigated.  

Deep neural networks have served as a promising tool in an 
automatic fashion for supervised sequence classification tasks. 
Both convolutional and recurrent networks have seen many 
successes in processing time-series, such as arrhythmia 
detection [4], fMRI disease state diagnosis [5] and genetic 
sequencing [6]. Yet the problem of varying breathing patterns 
has not been addressed by this new technique.  



 

  
 

In this study, we trained a neural network to differentiate 
irregular breathers from regular breathers with high accuracy, 
and explored the impact of irregular breathing patterns on 
respiratory gating. This classification can guide us to build an 
automated and personalized PET/CT motion correction 
framework, where for regular breathers, less complex 
algorithms (like phase gating and end-expiration gating) [7] 
are expected to provide equivalent accuracy while saving 
precious console computation time, and for irregular breathers, 
more sophisticated and time-consuming event-by-event 
motion correction is required to correct for the extra intra-gate 
motion [8].  

II. METHODS 

A. Deep learning network structure 
For the RPM supervised sequence classification task, the 

neural network is a hybrid structure consisting of 
convolutional (Conv) layers, recurrent layers and a linear 
classifier. RPM traces are fed as input into the network.  

The 1D Conv layers (Fig. 2) [9] serve as feature extractors 
from local input patches, like the 2D counterpart for image 
processing. The property of weight sharing and translate 
invariance in temporal dimension allows for efficient 
computation. With 1D Conv layers, longer sequences are 
convolved and pooled into shorter ones with rich Conv 
features. 

 

 
Figure 2. Diagram of 1D convolution [9]. 

 
However, these layers process input patches independently, 

and are not sensitive to the order of the timesteps, unlike the 
proceeding LSTM units (Fig. 3) [10]. LSTM is a popular RNN 
layer, explicitly designed for handling the long-term 
dependency problem. Three interactive gates work 
interactively to process the time-series, allowing features to 
propagate through long sequences [11].  
 

 
Figure 3. Diagram of LSTM [11]. 

 

Finally, binary breathing pattern (y = 0 as regular breather 
or y = 1  as irregular breather) is predicted by the linear 
classifier. The schematic diagram of the hybrid classification 
network is shown in Fig. 4.  

 
Figure 4. The hybrid structure of classification network, (batchsize, timesteps, 
features) denoting the dimension of tensor. 

 

B. Dataset preparation 
The training and validation dataset of respiratory traces for 

the network are collected from the RPM system, which 
monitored the chest motion during a 7-minute PET scan. This 
study recruits 1295 patients at the University of Washington, 
and each trace has been individually inspected visually and 
determined to be regular or irregular breather. Around 60% 
traces are from regular breathers and the remaining 40% 
otherwise.  

Additional traces by the Anzai system and corresponding 
PET imaging data acquired at Yale PET Center have been 
used for further testing. Both single bed and continuous bed 
motion (CBM) acquisition protocols record breathing traces 
between 1 and 2 hours in length.  

In order to fit traces collected from both motion tracking 
systems into a generalized framework, traces have been 
downsampled to 3 Hz, balancing the tradeoff between signal 
fidelity and computational expenses. Then we performed a 
retrospective calculation of amplitudes of each breathing 
cycle, so that all traces were normalized to a mean of zero and 
a mean amplitude of one across all cycles.   

 

C. Training and testing setup 
Random crops of traces were used for data augmentation. 

We used dropout (DO) and recurrent dropout (recurrent DO) 
units (Fig. 4) to prevent overfitting. The cross-entropy (CE) 
loss function is weighted as follows [12],  

Weighted CE 𝑝! , 𝑦 =  − 1 − 𝑝! !log(𝑝!) 

𝑝! =  𝑝, 𝑦 = 1 
1 − 𝑝, 𝑦 = 0 

where 𝑝  is the calculated classification probability by the 
output layer of the sigmoid function. Compared with 
traditional cross-entropy loss CE 𝑝! , 𝑦 =  − log 𝑝! , the 
term 1 − 𝑝! !  can help balance the importance between 
training examples that the network finds it easy or hard to 
classify. Additionally, we determined the threshold of 𝑝 by 
investigating the ROC curve. 

All the training and evaluation are performed with Keras 
(TensorFlow backend) as the deep learning framework, using 



 

  
 

a server with one Titan Xp GPU. We randomly select 20% 
subjects out of 1295 as the test set, while using the remaining 
for training. The prediction accuracy of neural networks 
consisting pure convolutional layers, pure LSTM layers and 
the hybrid structure has also been tested and compared.  

The capability of model generalization was further tested 
with Anzai traces. Reconstructions of PET images, with both 
no motion correction and phase gating, were generated with 
Siemens e-7 tools. Attenuation correction was performed with 
the corresponding CT data.  

III. RESULTS 

A. Test of RPM traces 
The neural network is able to properly differentiate irregular 

RPM traces from regular ones, achieving a high testing 
accuracy of 91.9%, with an ordinary decision boundary of 
𝑝 = 0.5, as reported in Table 1. The sensitivity and specificity 
are 92.0% and 91.8%, respectively, and the area under the 
ROC curve is 0.97.  
 

TABLE I. RPM TEST RESULTS 

 
 

The comparison of prediction performance of three different 
neural network structures is summarized in Table 2. The 
hybrid structure outperforms the pure convolutional or 
recurrent ones, showing that to use 1D Conv layers as 
preprocessing steps before LSTMs is beneficial for further 
exploiting the temporal features of breathing patterns.  
 

TABLE II. COMPARISON OF THREE NEURAL NETWORK STRUCTURES 

 
 

The ROC curve was used for selection of the classification 
threshold. Since high true positive rate (correct labeling of 
irregular breathers) is desired, we set a decision threshold of 
𝑝 = 0.439, increasing sensitivity to 97.7% while specificity as 
a tradeoff is therefore 84.5%. Examples of correctly classified 
results of RPM traces are shown in Fig. 5. 

 

 
Figure 5. RPM trace classification examples. 

 

B. Test of Anzai traces 
Due to the trace normalization schemes, the network is 

equally applicable to Anzai tracers, as classified examples 
shown in Fig. 6. As the neural network is able to output 
prediction results given an arbitrary trace length, accurate 
classification results can be produced for fragments of Anzai 
traces (for example, each 5-minute CBM scan path).  

 
Figure 6. Anzai trace classification examples (CBM). 

 
Furthermore, anomaly detection has been performed on the 

traces, using a sliding-window of 30 seconds to classify every 
few breathing cycles, so that we are able to detect when the 
breathing pattern changes. Examples in Fig. 7 showed that the 
network is able to detect changed breathing patterns within a 
scan. Breathing pattern changes can be tracked precisely, 
regardless of the overall breathing pattern of regular or 
irregular.   

 

 
Figure 7. Anzai trace anomaly detection examples (single bed), blue as regular 
and red as irregular. 
 

C. Effects of breathing on phase gating reconstruction 
We have performed initial experiments to investigate the 

effects of breathing patterns, determined by our proposed deep 
learning based classification, on image reconstruction with 
phase gating.  



 

  
 

As a sample patient shown in Fig. 8, for two consecutive 5-
minute scans, the breathing pattern was regular for the first 5 
minutes but changed to irregular pattern for the second 5 
minutes. Such breathing pattern changes have been correctly 
identified by the proposed network. Without motion 
correction, the image of the second 5 minutes is more blurred, 
likely due to the additional motion caused by breathing 
irregularity. In this case the inspiration gating did not improve 
much due to intra-gate motion. The end expiration phase 
gating provided more effective motion reduction for the 0-5 
min scan with regular breathing pattern, while additional 
blurring was observed in the 5-10 min scan with irregular 
breathing pattern, due to intra-gate motion.  

 

 
 
Figure 8. Sample results of the same patient at two consecutive 5 min scans 
with different breathing patterns and resulting reconstructed images with and 
without phase gating. 

 
As another example shown in Fig. 9, after the detected shift 

of regular respiratory pattern to irregular occurs at around 50 
minutes post injection, the intra-gated motion of end-
expiration phase gating increased, causing additional blurring 
as compared to the 40-50 min scan, as shown in the coronal 
slices of abdominal structures.  
 

 
Figure 9. Sample results of the same patient at three consecutive 10 min scans  
of different breathing patterns and resulting reconstructed images with end-
expiration. 

 

IV. DISCUSSION 
Due to the large amount of intra-gate motion caused by 

additional inter-cycle variability and inter-cycle variability, 
respiratory motion correction for irregular breathers are 
particularly challenging. Previous studies have shown that 
event-by-event listmode based motion correction utilizing the 
correlation between internal organs and external (INTEX) 
motion monitoring signal can effectively correction intra-gate 
motion, as the irregular breathing pattern information is 
maintained in the external motion signal and is taken into full 

account in the INTEX motion correction framework [13]-[17].  
However, such event-by-event correction is time-consuming.  

On the other hand, several other efficient motion correction 
methods have been implemented on clinical scanners [7]-[8]. 
For regular breathers with smaller amount of intra-gate 
motion, the motion correction performance of existing 
methods is expected to be similar to that of the more 
sophisticated approach, such as INTEX.  

In clinical practice, both image reconstruction and 
acquisition are typically performed on the same console 
computer. Therefore, precious console time prevents 
performing event-by-event motion correction for every 
patient. Using the proposed deep learning based breathing 
pattern classification method, one is able to determine if a 
patient is a regular or irregular breather. For regular breathers, 
existing motion correction methods on the scanner should 
provide sufficient motion correction. Only for the irregular 
breathers, event-by-event correction method will be performed 
to optimize the computing time of scanner console.  

In terms of classification accuracy tradeoff between 
sensitivity and specificity of detecting irregular breathers, we 
chose to achieve high sensitivity at the expense of specificity. 
If a regular breather is mis-classified as an irregular breather, 
the consequence is that event-by-event motion correction will 
be performed thus more computational resources are used. In 
contrast, if an irregular breather is mis-classified as a regular 
breather, using existing motion correction methods lacking 
intra-gate motion correction will result in sub-optimal image 
quality, which can subsequently affect patient diagnosis and 
management. Therefore, we chose the threshold 𝑝 = 0.439 in 
order to achieve 97.7% sensitivity but 84.5% specificity.  

V. SUMMARY 
In this study, we developed a neural network to identify the 

irregularity of the recorded breathing traces for PET/CT. We 
also showed that irregular breathing patterns would degrade 
the motion correction based on gating due to inter-cycle and 
intra-cycle motion variations. The developed classification 
network provides high sensitivity and has the potential of 
facilitating a workflow of automated and personalized 
PET/CT motion correction.  
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